3 research outputs found

    Improved Virus Removal in Ceramic Depth Filters Modified with MgO

    No full text
    Ceramic filters, working on the depth filtration principle, are known to improve drinking water quality by removing human pathogenic microorganisms from contaminated water. However, these microfilters show no sufficient barrier for viruses having diameters down to 20 nm. Recently, it was shown that the addition of positively charged materials, for example, iron oxyhydroxide, can improve virus removal by adsorption mechanisms. In this work, we modified a common ceramic filter based on diatomaceous earth by introducing a novel virus adsorbent material, magnesium oxyhydroxide, into the filter matrix. Such filters showed an improved removal of about 4-log in regard to bacteriophages MS2 and PhiX174. This is explained with the electrostatic enhanced adsorption approach that is the favorable adsorption of negatively charged viruses onto positively charged patches in an otherwise negatively charged filter matrix. Furthermore, we provide theoretical evidence applying calculations according to Derjaguin–Landau–Verwey–Overbeek theory to strengthen our experimental results. However, modified filters showed a significant variance in virus removal efficiency over the course of long-term filtration experiments with virus removal increasing with filter operation time (or filter aging). This is explained by transformational changes of MgO in the filter upon contact with water. It also demonstrates that filter history is of great concern when filters working on the adsorption principles are evaluated in regard to their retention performance as their surface characteristics may alter with use

    Bis-TEGylated Poly(<i>p</i>‑benzamide)s: Combining Organosolubility with Shape Persistence

    No full text
    The synthesis of perfectly planar, bis-substituted aromatic polyamides is reported herein. With highly flexible triethylene glycol chains attached and conformational restriction through intramolecular, bifurcated hydrogen bonds these are among the most shape-persistent yet organo-soluble polymers to date. Starting from 4-nitrosalicylic acid, our group developed a route to phenyl-2,5-bis-TEGylated aminobenzoate, which could be polymerized by addition of lithium bis­(trimethylsilyl)­amide (LiHMDS). Since this technique has not been applied to step-growth polycondensations of polyaramides so far, the influence of two different solvents and an N-protective group was investigated. Therefore, substituted phenyl aminobenzoate derivatives carrying a free amine or an N-protective group have been polymerized. Additionally, the tendency for self-assembly of the readily soluble bis-TEGylated poly­(<i>p</i>-benzamide) was observed by transmission electron microscopy (TEM) in the dried state. Dynamic light scattering (DLS) measurements of chloroform solutions did not indicate the formation of aggregates. Thus, intermolecular interactions, which other aromatic polyamides typically exhibit, are prevented. The access to bis-substituted, entirely rigid poly­(<i>p</i>-benzamide)­s via this new polycondensation method paves the way for exciting new structures in materials science and supramolecular chemistry

    Virus Removal in Ceramic Depth Filters Based on Diatomaceous Earth

    No full text
    Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage’s specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family <i>Siphoviridae</i> was removed by log 2 to 3, which is explained by postulating hydrophobic interactions
    corecore