9 research outputs found

    Folks in Folksonomies: Social Link Prediction from Shared Metadata

    Full text link
    Web 2.0 applications have attracted a considerable amount of attention because their open-ended nature allows users to create light-weight semantic scaffolding to organize and share content. To date, the interplay of the social and semantic components of social media has been only partially explored. Here we focus on Flickr and Last.fm, two social media systems in which we can relate the tagging activity of the users with an explicit representation of their social network. We show that a substantial level of local lexical and topical alignment is observable among users who lie close to each other in the social network. We introduce a null model that preserves user activity while removing local correlations, allowing us to disentangle the actual local alignment between users from statistical effects due to the assortative mixing of user activity and centrality in the social network. This analysis suggests that users with similar topical interests are more likely to be friends, and therefore semantic similarity measures among users based solely on their annotation metadata should be predictive of social links. We test this hypothesis on the Last.fm data set, confirming that the social network constructed from semantic similarity captures actual friendship more accurately than Last.fm's suggestions based on listening patterns.Comment: http://portal.acm.org/citation.cfm?doid=1718487.171852

    Diffusion of scientific credits and the ranking of scientists

    Full text link
    Recently, the abundance of digital data enabled the implementation of graph based ranking algorithms that provide system level analysis for ranking publications and authors. Here we take advantage of the entire Physical Review publication archive (1893-2006) to construct authors' networks where weighted edges, as measured from opportunely normalized citation counts, define a proxy for the mechanism of scientific credit transfer. On this network we define a ranking method based on a diffusion algorithm that mimics the spreading of scientific credits on the network. We compare the results obtained with our algorithm with those obtained by local measures such as the citation count and provide a statistical analysis of the assignment of major career awards in the area of Physics. A web site where the algorithm is made available to perform customized rank analysis can be found at the address http://www.physauthorsrank.orgComment: Revised version. 11 pages, 10 figures, 1 table. The portal to compute the rankings of scientists is at http://www.physauthorsrank.or

    Friendship prediction and homophily in social media

    No full text
    International audienceSocial media have attracted considerable attention because their open-ended nature allows users to create lightweight semantic scaffolding to organize and share content. To date, the interplay of the social and topical components of social media has been only partially explored. Here, we study the presence of homophily in three systems that combine tagging social media with online social networks. We find a substantial level of topical similarity among users who are close to each other in the social network. We introduce a null model that preserves user activity while removing local correlations, allowing us to disentangle the actual local similarity between users from statistical effects due to the assortative mixing of user activity and centrality in the social network. This analysis suggests that users with similar interests are more likely to be friends, and therefore topical similarity measures among users based solely on their annotation metadata should be predictive of social links. We test this hypothesis on several datasets, confirming that social networks constructed from topical similarity capture actual friendship accurately. When combined with topological features, topical similarity achieves a link prediction accuracy of about 92%

    “Socially induced semantic networks and applications” by Benjamin Markines

    No full text
    corecore