9 research outputs found
Folks in Folksonomies: Social Link Prediction from Shared Metadata
Web 2.0 applications have attracted a considerable amount of attention
because their open-ended nature allows users to create light-weight semantic
scaffolding to organize and share content. To date, the interplay of the social
and semantic components of social media has been only partially explored. Here
we focus on Flickr and Last.fm, two social media systems in which we can relate
the tagging activity of the users with an explicit representation of their
social network. We show that a substantial level of local lexical and topical
alignment is observable among users who lie close to each other in the social
network. We introduce a null model that preserves user activity while removing
local correlations, allowing us to disentangle the actual local alignment
between users from statistical effects due to the assortative mixing of user
activity and centrality in the social network. This analysis suggests that
users with similar topical interests are more likely to be friends, and
therefore semantic similarity measures among users based solely on their
annotation metadata should be predictive of social links. We test this
hypothesis on the Last.fm data set, confirming that the social network
constructed from semantic similarity captures actual friendship more accurately
than Last.fm's suggestions based on listening patterns.Comment: http://portal.acm.org/citation.cfm?doid=1718487.171852
Diffusion of scientific credits and the ranking of scientists
Recently, the abundance of digital data enabled the implementation of graph
based ranking algorithms that provide system level analysis for ranking
publications and authors. Here we take advantage of the entire Physical Review
publication archive (1893-2006) to construct authors' networks where weighted
edges, as measured from opportunely normalized citation counts, define a proxy
for the mechanism of scientific credit transfer. On this network we define a
ranking method based on a diffusion algorithm that mimics the spreading of
scientific credits on the network. We compare the results obtained with our
algorithm with those obtained by local measures such as the citation count and
provide a statistical analysis of the assignment of major career awards in the
area of Physics. A web site where the algorithm is made available to perform
customized rank analysis can be found at the address
http://www.physauthorsrank.orgComment: Revised version. 11 pages, 10 figures, 1 table. The portal to compute
the rankings of scientists is at http://www.physauthorsrank.or
Friendship prediction and homophily in social media
International audienceSocial media have attracted considerable attention because their open-ended nature allows users to create lightweight semantic scaffolding to organize and share content. To date, the interplay of the social and topical components of social media has been only partially explored. Here, we study the presence of homophily in three systems that combine tagging social media with online social networks. We find a substantial level of topical similarity among users who are close to each other in the social network. We introduce a null model that preserves user activity while removing local correlations, allowing us to disentangle the actual local similarity between users from statistical effects due to the assortative mixing of user activity and centrality in the social network. This analysis suggests that users with similar interests are more likely to be friends, and therefore topical similarity measures among users based solely on their annotation metadata should be predictive of social links. We test this hypothesis on several datasets, confirming that social networks constructed from topical similarity capture actual friendship accurately. When combined with topological features, topical similarity achieves a link prediction accuracy of about 92%