68 research outputs found

    Fully Functionalized Small-Molecule Probes for Integrated Phenotypic Screening and Target Identification

    No full text
    Phenotypic screening offers a powerful approach to identify small molecules that perturb complex biological processes in cells and organisms. The tendency of small molecules, however, to interact with multiple protein targets, often with moderate to weak affinities, along with the lack of straightforward technologies to characterize these interactions in living systems, has hindered efforts to understand the mechanistic basis for pharmacological activity. Here we address this challenge by creating a fully functionalized small-molecule library whose membership is endowed with: (1) one or more diversity elements to promote interactions with different protein targets in cells, (2) a photoreactive group for UV light-induced covalent cross-linking to interacting proteins, and (3) an alkyne handle for reporter tag conjugation to visualize and identify cross-linked proteins. A library member was found to inhibit cancer cell proliferation selectively under nutrient-limiting (low glucose) conditions. Quantitative chemoproteomics identified MT-ND1, an integral membrane subunit of the ∼1 MDa NADH:ubiquinone oxidoreductase (complex 1) involved in oxidative phosphorylation, as a specific target of the active probe. We further demonstrated that the active probe inhibits complex 1 activity in vitro (IC<sub>50</sub> = 720 nM), an effect that is known to induce cell death in low-glucose conditions. Based on this proof of principle study, we anticipate that the generation and integration of fully functionalized compound libraries into phenotypic screening programs should facilitate the discovery of bioactive probes that are amenable to accelerated target identification and mechanistic characterization using advanced chemoproteomic technologies

    Fully Functionalized Small-Molecule Probes for Integrated Phenotypic Screening and Target Identification

    No full text
    Phenotypic screening offers a powerful approach to identify small molecules that perturb complex biological processes in cells and organisms. The tendency of small molecules, however, to interact with multiple protein targets, often with moderate to weak affinities, along with the lack of straightforward technologies to characterize these interactions in living systems, has hindered efforts to understand the mechanistic basis for pharmacological activity. Here we address this challenge by creating a fully functionalized small-molecule library whose membership is endowed with: (1) one or more diversity elements to promote interactions with different protein targets in cells, (2) a photoreactive group for UV light-induced covalent cross-linking to interacting proteins, and (3) an alkyne handle for reporter tag conjugation to visualize and identify cross-linked proteins. A library member was found to inhibit cancer cell proliferation selectively under nutrient-limiting (low glucose) conditions. Quantitative chemoproteomics identified MT-ND1, an integral membrane subunit of the ∼1 MDa NADH:ubiquinone oxidoreductase (complex 1) involved in oxidative phosphorylation, as a specific target of the active probe. We further demonstrated that the active probe inhibits complex 1 activity in vitro (IC<sub>50</sub> = 720 nM), an effect that is known to induce cell death in low-glucose conditions. Based on this proof of principle study, we anticipate that the generation and integration of fully functionalized compound libraries into phenotypic screening programs should facilitate the discovery of bioactive probes that are amenable to accelerated target identification and mechanistic characterization using advanced chemoproteomic technologies

    ABHD4 Regulates Multiple Classes of <i>N</i>‑Acyl Phospholipids in the Mammalian Central Nervous System

    No full text
    <i>N</i>-Acyl phospholipids are atypical components of cell membranes that bear three acyl chains and serve as potential biosynthetic precursors for lipid mediators such as endocannabinoids. Biochemical studies have implicated ABHD4 as a brain <i>N</i>-acyl phosphatidylethanolamine (NAPE) lipase, but <i>in vivo</i> evidence for this functional assignment is lacking. Here, we describe ABHD4<sup>–/–</sup> mice and their characterization using untargeted lipidomics to discover that ABHD4 regulates multiple classes of brain <i>N</i>-acyl phospholipids. In addition to showing reductions in brain glycerophospho-NAEs (GP-NAEs) and plasmalogen-based lyso-NAPEs (lyso-pNAPEs), ABHD4<sup>–/–</sup> mice exhibited decreases in a distinct set of brain lipids that were structurally characterized as <i>N</i>-acyl lysophosphatidylserines (lyso-NAPSs). Biochemical assays confirmed that NAPS lipids are direct substrates of ABHD4. These findings, taken together, designate ABHD4 as a principal regulator of <i>N</i>-acyl phospholipid metabolism in the mammalian nervous system

    Mapping the Protein Interaction Landscape for Fully Functionalized Small-Molecule Probes in Human Cells

    No full text
    Phenotypic screening provides a means to discover small molecules that perturb cell biological processes. Discerning the proteins and biochemical pathways targeted by screening hits, however, remains technically challenging. We recently described the use of small molecules bearing photoreactive groups and latent affinity handles as fully functionalized probes for integrated phenotypic screening and target identification. The general utility of such probes, or, for that matter, any small-molecule screening library, depends on the scope of their protein interactions in cells, a parameter that remains largely unexplored. Here, we describe the synthesis of an ∼60-member fully functionalized probe library, prepared from Ugi-azide condensation reactions to impart structural diversity and introduce diazirine and alkyne functionalities for target capture and enrichment, respectively. In-depth mass spectrometry-based analysis revealed a diverse array of probe targets in human cells, including enzymes, channels, adaptor and scaffolding proteins, and proteins of uncharacterized function. For many of these proteins, ligands have not yet been described. Most of the probe–protein interactions showed well-defined structure–activity relationships across the probe library and were blocked by small-molecule competitors in cells. These findings indicate that fully functionalized small molecules canvas diverse segments of the human proteome and hold promise as pharmacological probes of cell biology

    Mapping the Protein Interaction Landscape for Fully Functionalized Small-Molecule Probes in Human Cells

    No full text
    Phenotypic screening provides a means to discover small molecules that perturb cell biological processes. Discerning the proteins and biochemical pathways targeted by screening hits, however, remains technically challenging. We recently described the use of small molecules bearing photoreactive groups and latent affinity handles as fully functionalized probes for integrated phenotypic screening and target identification. The general utility of such probes, or, for that matter, any small-molecule screening library, depends on the scope of their protein interactions in cells, a parameter that remains largely unexplored. Here, we describe the synthesis of an ∼60-member fully functionalized probe library, prepared from Ugi-azide condensation reactions to impart structural diversity and introduce diazirine and alkyne functionalities for target capture and enrichment, respectively. In-depth mass spectrometry-based analysis revealed a diverse array of probe targets in human cells, including enzymes, channels, adaptor and scaffolding proteins, and proteins of uncharacterized function. For many of these proteins, ligands have not yet been described. Most of the probe–protein interactions showed well-defined structure–activity relationships across the probe library and were blocked by small-molecule competitors in cells. These findings indicate that fully functionalized small molecules canvas diverse segments of the human proteome and hold promise as pharmacological probes of cell biology

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Metabolically Labile Fumarate Esters Impart Kinetic Selectivity to Irreversible Inhibitors

    No full text
    Electrophilic small molecules are an important class of chemical probes and drugs that produce biological effects by irreversibly modifying proteins. Examples of electrophilic drugs include covalent kinase inhibitors that are used to treat cancer and the multiple sclerosis drug dimethyl fumarate. Optimized covalent drugs typically inactivate their protein targets rapidly in cells, but ensuing time-dependent, off-target protein modification can erode selectivity and diminish the utility of reactive small molecules as chemical probes and therapeutics. Here, we describe an approach to confer kinetic selectivity to electrophilic drugs. We show that an analogue of the covalent Bruton’s tyrosine kinase (BTK) inhibitor Ibrutinib bearing a fumarate ester electrophile is vulnerable to enzymatic metabolism on a time-scale that preserves rapid and sustained BTK inhibition, while thwarting more slowly accumulating off-target reactivity in cell and animal models. These findings demonstrate that metabolically labile electrophilic groups can endow covalent drugs with kinetic selectivity to enable perturbation of proteins and biochemical pathways with greater precision

    Proteome-Wide Reactivity Profiling Identifies Diverse Carbamate Chemotypes Tuned for Serine Hydrolase Inhibition

    No full text
    Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Inhibitors of serine hydrolases are used to treat many diseases, including obesity, diabetes, cognitive dementia, and bacterial and viral infections. Nonetheless, the majority of the 200+ serine hydrolases in mammals still lack selective inhibitors for their functional characterization. We and others have shown that activated carbamates, through covalent reaction with the conserved serine nucleophile of serine hydrolases, can serve as useful inhibitors for members of this enzyme family. The extent to which carbamates, however, cross-react with other protein classes remains mostly unexplored. Here, we address this problem by investigating the proteome-wide reactivity of a diverse set of activated carbamates <i>in vitro</i> and <i>in vivo</i>, using a combination of competitive and click chemistry (CC)-activity-based protein profiling (ABPP). We identify multiple classes of carbamates, including <i>O</i>-aryl, <i>O</i>-hexafluoroisopropyl (HFIP), and <i>O</i>-<i>N</i>-hydroxysuccinimidyl (NHS) carbamates that react selectively with serine hydrolases across entire mouse tissue proteomes <i>in vivo</i>. We exploit the proteome-wide specificity of HFIP carbamates to create <i>in situ</i> imaging probes for the endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and α-β hydrolase-6 (ABHD6). These findings, taken together, designate the carbamate as a privileged reactive group for serine hydrolases that can accommodate diverse structural modifications to produce inhibitors that display exceptional potency and selectivity across the mammalian proteome

    Remodeling Natural Products: Chemistry and Serine Hydrolase Activity of a Rocaglate-Derived β‑Lactone

    No full text
    Flavaglines are a class of natural products with potent insecticidal and anticancer activities. β-Lactones are a privileged structural motif found in both therapeutic agents and chemical probes. Herein, we report the synthesis, unexpected light-driven di-epimerization, and activity-based protein profiling of a novel rocaglate-derived β-lactone. In addition to <i>in vitro</i> inhibition of the serine hydrolases ABHD10 and ACOT1/2, the most potent β-lactone enantiomer was also found to inhibit these enzymes, as well as the serine peptidases CTSA and SCPEP1, in PC3 cells

    Remodeling Natural Products: Chemistry and Serine Hydrolase Activity of a Rocaglate-Derived β‑Lactone

    No full text
    Flavaglines are a class of natural products with potent insecticidal and anticancer activities. β-Lactones are a privileged structural motif found in both therapeutic agents and chemical probes. Herein, we report the synthesis, unexpected light-driven di-epimerization, and activity-based protein profiling of a novel rocaglate-derived β-lactone. In addition to <i>in vitro</i> inhibition of the serine hydrolases ABHD10 and ACOT1/2, the most potent β-lactone enantiomer was also found to inhibit these enzymes, as well as the serine peptidases CTSA and SCPEP1, in PC3 cells
    • …
    corecore