9 research outputs found

    Assessment of the Pro12Ala polymorphism in the PPAR-γ2 gene among type 2 diabetes patients in a Nigerian population

    Get PDF
    The association between the Pro12Ala polymorphism of the PPARγ2 gene, type 2 diabetes (T2D), and obesity in certain ethnic populations has been reported. However, this relationship has not yet been described among diabetes patients in Nigeria. This study investigated the relationship between the Pro12Ala polymorphism in the PPARγ2 gene, obesity, and lipid abnormalities characterizing T2D among patients in Nigeria. This case-control study recruited 73 T2D and 75 non-diabetic (ND) patients. Demographic and clinical data were collected and blood glucose levels together with serum lipid profile for patients were measured. Pro12Ala polymorphism in the PPARγ2 gene was genotyped by restriction fragment length-Polymerase Chain Reaction (RFLP-PCR). The PPAR-γ2 gene (amplicon size = 270 base pair) was successfully amplified for all samples. Following restriction enzyme digestion and analysis by agarose gel electrophoresis, amplicons from samples showed a band of size 270 bp and were of the wild homozygous Pro/Pro genotype. Ala12 variant was totally absent from the study population. Obesity, estimated using Body Mass Index (BMI) and waist circumference (WC), was significantly higher (p 200 mg/dL), hypertriglyceridaemia (TG > 150 mg/dL), high HDL (>100 mg/dL), and low HDL (<50 mg/dL) was significantly greater (p < 0.001) in T2D patients compared to non-diabetic patients. Results obtained further indicated lack of significant association between PPAR-γ2 gene polymorphism, T2D, and obesity. However, obesity and dyslipidaemia were strongly associated in T2D patients

    Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors

    Get PDF
    Floral induction is an important event in the annual growth cycle of perennial fruit trees. For pear, this event directly affects fruit production in the following year. The flower buds in many species are induced by FLOWERING LOCUS T (FT), whose effect is repressed by the meristem-expressed gene TERMINAL FLOWER1 (TFL1). In this study, we investigated the functions of pear FT and TFL1 genes during floral development. Expression of pear FTs (PpFT1a and PpFT2a) in reproductive meristems was not obviously induced prior to floral initiation, while expression of TFL1s (PpTFL1-1a and PpTFL1-2a) rapidly decreased. The induction of the productive meristem identity MADS-box gene AP1 after repression of PpTFL1s suggested a primary role for PpTFL1 in floral induction. RNA-seq analysis suggested that plant hormone-related genes and several transcription factors that were coexpressed with PpTFL1 were potentially involved in the PpTFL1-mediated floral induction. Our data indicate the essential function of TFL1 in pear floral induction and add another species in the family Rosaceae in addition to strawberry and rose that shows a role for TFL1 in floral induction

    Relationship between Type 2 Diabetes and Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency and Their Effect on Oxidative Stress

    Get PDF
    Objective: Though the relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and type 2 diabetes (T2D) has been reported, their interaction to influence oxidative stress is not fully understood. This study was conducted to investigate the relationship between T2D and G6PD deficiency and assessed their effect on oxidative stress. Methodology: A total of 73 T2D and 75 non-diabetic (ND) out-patients at Enugu State University Teaching Hospital (ESUTH) in Enugu, Nigeria were recruited. They were screened for G6PD deficiency, oxidative stress markers; lipid peroxidation, protein peroxidation and glycated haemoglobin (HbA1c) and antioxidant enzymes; superoxide dismutase (SOD) and catalase activities were assayed. Results: Oxidative stress was influenced by T2D as malondialdehyde (MDA), protein carbonyl and HbA1c levels were significantly higher (p0.05) interaction between G6PD deficiency and T2D to influence oxidative stress in patients. Conclusion: The interaction between G6PD deficiency and T2D did not influence oxidative stress though there was a possible relationship between G6PD deficiency and T2D in male patients.This study was partially supported by the competitive research grant of Godfrey Okoye University, Enugu Nigeria.Published onlin

    Possible association between ABCC8 C49620T polymorphism and type 2 diabetes in a Nigerian population

    Get PDF
    The association between ABCC8 gene C49620T polymorphism and type 2 diabetes (T2D) in populations of diverse ethnic backgrounds has been reported. However, such occurrence in an African population is yet to be established. This case-control study involving 73 T2D and 75 non-diabetic (ND) patients investigated the occurrence of this polymorphism among T2D patients in Nigeria and assessed its relationship with body lipids of patients. Demographic and clinical characteristics of patients were collected and lipid profile indices including total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) were assayed. Restriction fragment length polymorphism-PCR (RFLP-PCR) was employed to genotype the ABCC8-C49620T polymorphism using PstI restriction enzyme. This study revealed significantly (p 0.05) of T2D for the unadjusted codominant, dominant and recessive models. Following age adjustment, the mutant genotypes (CT and TT) showed significant (p<0.05) risk of T2D for all the models with the recessive model presenting the greatest risk of T2D (OR: 2.39, 95% CI: 1.16-4.91, p<0.018). The TT genotype significantly (p<0.05) associated with high level of HDL and reduced levels of TC, TG and LDL in non-diabetic patients but was not associated with any of the demographic and clinical characteristics among T2D patients. ABCC8 C49620T polymorphism showed possible association with T2D marked by predominance of the mutant TT genotype in T2D patients. However, the relationship between TT genotype and lipid abnormalities for possible beneficial effect on people suffering from T2D is unclear

    Evaluation of Agronomic Performance of Maize (Zea mays L.) under Different Rates of Poultry Manure Application in an Ultisol of Obubra, Cross River State, Nigeria

    No full text
    Abstract Field studies were conducted at the Teaching and Research farm of the Cross River University of Technology, Obubra Campus, Nigeria, during the 2005 and 2006 cropping seasons to determine the agronomic performance of maize under different rates of poultry manure (PM) application. Ten rates of PM treatments consisting of 0

    Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers

    No full text
    Abstract Background Assessment of genetic diversity of Vigna unguiculata (L.) Walp (cowpea) accessions using informative molecular markers is imperative for their genetic improvement and conservation. Use of efficacious molecular markers to obtain the required knowledge of the genetic diversity within the local and regional germplasm collections can enhance the overall effectiveness of cowpea improvement programs, hence, the comparative assessment of Inter-simple sequence repeat (ISSR) and Start codon targeted (SCoT) markers in genetic diversity of V. unguiculata accessions from different regions in Nigeria. Comparative analysis of the genetic diversity of eighteen accessions from different locations in Nigeria was investigated using ISSR and SCoT markers. DNA extraction was done using Zymogen Kit according to its manufacturer’s instructions followed by amplifications with ISSR and SCoT and agarose gel electrophoresis. The reproducible bands were scored for analyses of dendrograms, principal component analysis, genetic diversity, allele frequency, polymorphic information content, and population structure. Results Both ISSR and SCoT markers resolved the accessions into five major clusters based on dendrogram and principal component analyses. Alleles of 32 and 52 were obtained with ISSR and SCoT, respectively. Numbers of alleles, gene diversity and polymorphic information content detected with ISSR were 9.4000, 0.7358 and 0.7192, while SCoT yielded 11.1667, 0.8158 and 0.8009, respectively. Polymorphic loci were 70 and 80 in ISSR and SCoT, respectively. Both markers produced high polymorphism (94.44–100%). The ranges of effective number of alleles (Ne) were 1.2887 ± 0.1797–1.7831 ± 0.2944 and 1.7416 ± 0.0776–1.9181 ± 0.2426 in ISSR and SCoT, respectively. The Nei’s genetic diversity (H) ranged from 0.2112 ± 0.0600–0.4335 ± 0.1371 and 0.4111 ± 0.0226–0.4778 ± 0.1168 in ISSR and SCoT, respectively. Shannon’s information index (I) from ISSR and SCoT were 0.3583 ± 0.0639–0.6237 ± 0.1759 and 0.5911 ± 0.0233–0.6706 ± 0.1604. Total gene diversity (Ht), gene diversity within population (Hs), coefficient of gene differentiation (Gst) and level of gene flow (Nm) revealed by ISSR were 0.4498, 0.3203, 0.2878 and 1.2371 respectively, while SCoT had 0.4808, 0.4522, 0.0594 and 7.9245. Conclusions Both markers showed highest genetic diversity in accessions from Ebonyi. Our study demonstrated that SCoT markers were more efficient than ISSR for genetic diversity studies in V. unguiculata and can be integrated in the exploration of their genetic diversity for improvement and germplasm utilization
    corecore