3,731 research outputs found

    Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst.

    Get PDF
    Carbon quantum dots (CQDs) are established as excellent photosensitizers in combination with a molecular catalyst for solar light driven hydrogen production in aqueous solution. The inexpensive CQDs can be prepared by straightforward thermolysis of citric acid in a simple one-pot, multigram synthesis and are therefore scalable. The CQDs produced reducing equivalents under solar irradiation in a homogeneous photocatalytic system with a Ni-bis(diphosphine) catalyst, giving an activity of 398 μmolH2 (gCQD)(-1) h(-1) and a "per Ni catalyst" turnover frequency of 41 h(-1). The CQDs displayed activity in the visible region beyond λ > 455 nm and maintained their full photocatalytic activity for at least 1 day under full solar spectrum irradiation. A high quantum efficiency of 1.4% was recorded for the noble- and toxic-metal free photocatalytic system. Thus, CQDs are shown to be a highly sustainable light-absorbing material for photocatalytic schemes, which are not limited by cost, toxicity, or lack of scalability. The photocatalytic hybrid system was limited by the lifetime of the molecular catalyst, and intriguingly, no photocatalytic activity was observed using the CQDs and 3d transition metal salts or platinum precursors. This observation highlights the advantage of using a molecular catalyst over commonly used heterogeneous catalysts in this photocatalytic system.This work was supported by an Oppenheimer PhD scholarship (to B.C.M.M.), a Poynton PhD scholarship (to G.A.M.H.), a Marie Curie postdoctoral fellowship (GAN 624997 to C.C.), an EPSRC Career Acceleration Fellowship (EP/H00338X/2 to E.R.), the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research, and Economy and the National Foundation for Research, Technology and Development), and the OMV Group.This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/jacs.5b01650

    Wave attenuation model for dephasing and measurement of conditional times

    Full text link
    Inelastic scattering induces dephasing in mesoscopic systems. An analysis of previous models to simulate inelastic scattering in such systems is presented and also a relatively new model based on wave attenuation is introduced. The problem of Aharonov-Bohm(AB) oscillations in conductance of a mesoscopic ring is studied. We have shown that conductance is symmetric under flux reversal and visibility of AB oscillations decay to zero as function of the incoherence parameter, signalling dephasing. Further wave attenuation is applied to a fundamental problem in quantum mechanics, i.e., the conditional(reflection/transmission) times spent in a given region of space by a quantum particle before scattering off from that region.Comment: 8 pages, 6 figures. Based on presentations by A. M. J and C. B at the 2nd Winter Institute on Foundations of Quantum theory, Quantum Optics and QIP held at S N Bose National Centre for Basic Sciences, Kolkata, India, from January 2-11, 200

    The Ferris ferromagnetic resonance technique: principles and applications

    Full text link
    Measurements of ferromagnetic resonance (FMR) are pivotal to modern magnetism and spintronics. Recently, we reported on the Ferris FMR technique, which relies on large-amplitude modulation of the externally applied magnetic field. It was shown to benefit from high sensitivity while being broadband. The Ferris FMR also expanded the resonance linewidth such that the sensitivity to spin currents was enhanced as well. Eventually, the spin Hall angle ({\theta}_SH) was measurable even in wafer-level measurements that require low current densities to reduce the Joule heating. Despite the various advantages, analysis of the Ferris FMR response is limited to numerical modeling where the linewidth depends on multiple factors such as the field modulation profile and the magnetization saturation. Here, we describe in detail the basic principles of operation of the Ferris FMR and discuss its applicability and engineering considerations. We demonstrated these principles in a measurement of the orbital Hall effect taking place in Cu, using an Au layer as the orbital to spin current converter. This illustrates the potential of the Ferris FMR for the future development of spintronics technology

    Bang-bang control of fullerene qubits using ultra-fast phase gates

    Full text link
    Quantum mechanics permits an entity, such as an atom, to exist in a superposition of multiple states simultaneously. Quantum information processing (QIP) harnesses this profound phenomenon to manipulate information in radically new ways. A fundamental challenge in all QIP technologies is the corruption of superposition in a quantum bit (qubit) through interaction with its environment. Quantum bang-bang control provides a solution by repeatedly applying `kicks' to a qubit, thus disrupting an environmental interaction. However, the speed and precision required for the kick operations has presented an obstacle to experimental realization. Here we demonstrate a phase gate of unprecedented speed on a nuclear spin qubit in a fullerene molecule (N@C60), and use it to bang-bang decouple the qubit from a strong environmental interaction. We can thus trap the qubit in closed cycles on the Bloch sphere, or lock it in a given state for an arbitrary period. Our procedure uses operations on a second qubit, an electron spin, in order to generate an arbitrary phase on the nuclear qubit. We anticipate the approach will be vital for QIP technologies, especially at the molecular scale where other strategies, such as electrode switching, are unfeasible

    Effect of quantum entanglement on Aharonov-Bohm oscillations, spin-polarized transport and current magnification effect

    Get PDF
    We present a simple model of transmission across a metallic mesoscopic ring. In one of its arm an electron interacts with a single magnetic impurity via an exchange coupling. We show that entanglement between electron and spin impurity states leads to reduction of Aharonov-Bohm oscillations in the transmission coefficient. The spin-conductance is asymmetric in the flux reversal as opposed to the two probe electrical conductance which is symmetric. In the same model in contradiction to the naive expectation of a current magnification effect, we observe enhancement as well as the suppression of this effect depending on the system parameters. The limitations of this model to the general notion of dephasing or decoherence in quantum systems are pointed out.Comment: Talk presented at the International Discussion Meeting on Mesoscopic and Disordered systems, December, 2000, at IISc Bangalore 17 pages, 8figure

    Incidence of pulmonary hypertension and determining factors in patients with systemic sclerosis

    Get PDF
    Objective: The objective of this study was to evaluate the incidence of pulmonary hypertension (PH) and determining factors in patients with systemic sclerosis (SSc) and a DLCO < 60% predicted.Methods:In this bicentric, prospective cohort study, patients with SSc were assessed at baseline and after 3 years clinically including right heart catheterization (RHC). Analysis of determining factors for development of PH was performed using univariate and multivariate analysis.Results:Ninety-six patients with mean pulmonary artery pressure (mPAP) <25 mmHg at baseline were followed 2.95±0.7 (median 3) years. Seventy-one had a second RHC; 18 of the 71 patients (25.3%) developed PH, 5 (7%) a SSc-associated pulmonary arterial hypertension. For patients with mPAP between 21 and 24 mmHg at baseline, the likelihood of presenting with PH as opposed to normal pressures on follow-up was significantly higher (p=0.026). Pulmonary vascular resistance, tricuspid regurgitation velocity, diffusion capacity and size of inferior vena cava at baseline were independent predictors for development of PH during follow-up.Conclusion:In a selected cohort of SSc patients with a DLCO < 60%, pulmonary pressures appear to rise progressively during follow up. In this population using prospective RHC during follow-up it was possible to identify manifest PH in almost 25% of 44 patients. Therefore, regular clinical assessment including RHC might be useful in SSc-patients.Most important findings:In a selected cohort of SSc patients pulmonary pressures appear to rise progressively, leading to a development of manifest PH in 25% within 3 years

    Efficient generation of spin currents by the Orbital Hall effect in pure Cu and Al and their measurement by a Ferris-wheel ferromagnetic resonance technique at the wafer level

    Full text link
    We present a new ferromagnetic resonance (FMR) method that we term the Ferris FMR. It is wideband, has significantly higher sensitivity as compared to conventional FMR systems, and measures the absorption line rather than its derivative. It is based on large-amplitude modulation of the externally applied magnetic field that effectively magnifies signatures of the spin-transfer torque making its measurement possible even at the wafer-level. Using the Ferris FMR, we report on the generation of spin currents from the orbital Hall effect taking place in pure Cu and Al. To this end, we use the spin-orbit coupling of a thin Pt layer introduced at the interface that converts the orbital current to a measurable spin current. While Cu reveals a large effective spin Hall angle exceeding that of Pt, Al possesses an orbital Hall effect of opposite polarity in agreement with the theoretical predictions. Our results demonstrate additional spin- and orbit- functionality for two important metals in the semiconductor industry beyond their primary use as interconnects with all the advantages in power, scaling, and cost

    Visualizing sound emission of elephant vocalizations: evidence for two rumble production types

    Get PDF
    Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure

    F-Theorem without Supersymmetry

    Full text link
    The conjectured F-theorem for three-dimensional field theories states that the finite part of the free energy on S^3 decreases along RG trajectories and is stationary at the fixed points. In previous work various successful tests of this proposal were carried out for theories with {\cal N}=2 supersymmetry. In this paper we perform more general tests that do not rely on supersymmetry. We study perturbatively the RG flows produced by weakly relevant operators and show that the free energy decreases monotonically. We also consider large N field theories perturbed by relevant double trace operators, free massive field theories, and some Chern-Simons gauge theories. In all cases the free energy in the IR is smaller than in the UV, consistent with the F-theorem. We discuss other odd-dimensional Euclidean theories on S^d and provide evidence that (-1)^{(d-1)/2} \log |Z| decreases along RG flow; in the particular case d=1 this is the well-known g-theorem.Comment: 34 pages, 2 figures; v2 refs added, minor improvements; v3 refs added, improved section 4.3; v4 minor improvement
    • …
    corecore