157 research outputs found

    EcoMapper operations---KN209-1

    Get PDF
    This report describes the collection of water property data from EcoMapper AUVs during the R/V Knorr 209-1 cruise as part of the SPURS (Salinity Processes Upper-ocean Regional Study) project. Post-processing was required to improve the quality of the raw data, particularly salinity, and is documented herein. Initial results from temperature and salinity records are presented. The measurements are concentrated in the upper 10 meters of the mixed layer during calm conditions, and reveal significant diurnal warming (up to 3°C) and salinification (up to 0.1 psu) of the surface (< 1 meter) layer. The mixing promoted by the motion of the research vessel destroys this shallow stratification, so the ability of the AUVs to sample undisturbed water hundreds of meters from the ship was critical to the effort of accurately resolving it.Funding was provided by NASA under Grant No. NNX11AE82

    AUV observations of the diurnal surface layer in the North Atlantic salinity maximum

    Get PDF
    Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1595–1604, doi:10.1175/JPO-D-13-0140.1.Autonomous underwater vehicle (AUV) surveys of temperature, salinity, and velocity in the upper 10 m of the ocean were carried out in low-wind conditions near the North Atlantic surface salinity maximum as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) project. Starting from a well-mixed state, the development, deepening, and decay of a warm salty diurnal surface layer was observed at <1-h resolution. The evaporation rate deduced from the freshwater anomaly of the layer corroborates measurements at a nearby flux mooring. Profiles within a few hundred meters of the stationary research vessel showed evidence of mixing, highlighting the effectiveness of AUVs for collecting uncontaminated time series of near-surface thermohaline structure. A two-dimensional horizontal subsurface survey within the diurnal warm layer revealed coherent warm and cool bands, which are interpreted as internal waves on the diurnal thermocline.NASA supported this work under Grant NNX11AE82G.2014-12-0

    OC449-09 Data Report : St. Thomas, USVI to Bermuda, December 1-10, 2008

    Get PDF
    Data collected during multiple surveys of hydrography, velocity, and biological quantities are presented from a 9-day cruise aboard the R/V Oceanus near the island of St. Thomas, USVI and a subsequent transit to Bermuda during December, 2008. This cruise (OC449-09) was undertaken primarily to field test a newly acquired towed-undulating body, the Scanfish. The Scanfish and a second towed body, the Video Plankton Recorder (VPR), were used to survey hydrographic, optical, and biological properties north and south of St. Thomas. Conductivity-Temperature-Depth (CTD) casts and plankton net-tows were made at locations along the survey transects for inter-comparison. The VPR was also used to profile conditions between St. Thomas and Bermuda during transit. An overview of the cruise is given along with descriptions of the data collection methods, processing steps taken, and data products available for distribution.Funding for this research was provided by the King Abdullah University of Science and Technology (KAUST) under a cooperative research agreement with Woods Hole Oceanographic Institution

    Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Corkeron, P. J., Van Parijs, S. M., Hotchkin, C., Hodges, B. A., Thornton, J. B., Mensi, B. L., & Bruner, S. M. Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information. Frontiers in Marine Science, 7, (2020):100, doi:10.3389/fmars.2020.00100.Mitigating the effects of human activities on marine mammals often depends on monitoring animal occurrence over long time scales, large spatial scales, and in real time. Passive acoustics, particularly from autonomous vehicles, is a promising approach to meeting this need. We have previously developed the capability to record, detect, classify, and transmit to shore information about the tonal sounds of baleen whales in near real time from long-endurance ocean gliders. We have recently developed a protocol by which a human analyst reviews this information to determine the presence of marine mammals, and the results of this review are automatically posted to a publicly accessible website, sent directly to interested parties via email or text, and made available to stakeholders via a number of public and private digital applications. We evaluated the performance of this system during two 3.75-month Slocum glider deployments in the southwestern Gulf of Maine during the spring seasons of 2015 and 2016. Near real-time detections of humpback, fin, sei, and North Atlantic right whales were compared to detections of these species from simultaneously recorded audio. Data from another 2016 glider deployment in the same area were also used to compare results between three different analysts to determine repeatability of results both among and within analysts. False detection (occurrence) rates on daily time scales were 0% for all species. Daily missed detection rates ranged from 17 to 24%. Agreement between two trained novice analysts and an experienced analyst was greater than 95% for fin, sei, and right whales, while agreement was 83–89% for humpback whales owing to the more subjective process for detecting this species. Our results indicate that the presence of baleen whales can be accurately determined using information about tonal sounds transmitted in near real-time from Slocum gliders. The system is being used operationally to monitor baleen whales in United States, Canadian, and Chilean waters, and has been particularly useful for monitoring the critically endangered North Atlantic right whale throughout the northwestern Atlantic Ocean.Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy’s Living Marine Resources Program

    CLIMODE bobber data report : July 2005 - May 2009

    Get PDF
    This report summarizes direct observations of Eighteen Degree Water (EDW) subduction and dispersal within the subtropical gyre of the North Atlantic Ocean. Forty acoustically-tracked bobbing, profiling floats (“bobbers”) were deployed to study the formation and dispersal of EDW in the western North Atlantic. The unique bobber dataset described herein provides insight into the evolution of EDW by means of direct, eddy-resolving measurement of EDW Lagrangian dispersal pathways and stratification. Bobbers are modified Autonomous Profiling Explorer (APEX) profiling floats which actively servo their buoyancy control mechanism to follow a particular isothermal surface. The CLIVAR Mode Water Dynamics Experiment (CLIMODE) bobbers tracked the 18.5°C temperature surface for 3 days, then bobbed quickly between the 17°C and 19°C isotherms. This cycle was repeated for one month, after which each bobber profiled to 1000 m before ascending to the surface to transmit data. The resulting dataset (37/40 tracked bobbers; more than half still profiling as of January 2010) yields well-resolved trajectories, unprecedented velocity statistics in the core of the subducting and spreading EDW, and detailed information about the Lagrangian evolution of EDW thickness and vertical structure. This report provides an overview of the experimental procedure employed and summarizes the initial processing of the bobber dataset.Funding was provided by the National Science Foundation under Grant No. OCE-0424492

    EcoCTD for profiling oceanic physical-biological properties from an underway ship

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 825-840, doi:10.1175/JTECH-D-19-0145.1.The study of ocean dynamics and biophysical variability at submesoscales of O(1) km and O(1) h raises several observational challenges. To address these by underway sampling, we recently developed a towed profiler called the EcoCTD, capable of concurrently measuring both hydrographic and bio-optical properties such as oxygen, chlorophyll fluorescence, and optical backscatter. The EcoCTD presents an attractive alternative to currently used towed platforms due to its light footprint, versatility in the field, and ease of deployment and recovery without cranes or heavy-duty winches. We demonstrate its use for gathering high-quality data at submesoscale spatiotemporal resolution. A dataset of bio-optical and hydrographic properties, collected with the EcoCTD during field trials in 2018, highlights its scientific potential for the study of physical–biological interactions at submesoscales.Authors would like to acknowledge Melissa Omand, Ben Pietro, and Jing He for their valuable input during the design phase of the EcoCTD, as well as for their support for deploying the EcoCTD in the field. We are grateful to Eva Alou, Andrea Carbonero, and John Allen for providing calibrated data from the shipboard CTD. Authors would also like to thank Don Peters along with Dynamics System Analysis Ltd. for facilitating access to ProteusDS and providing support in using the software. We are grateful to the crew of the RV Armstrong and NRV Alliance for their support in the field. Development of the EcoCTD is supported by the Office of Naval Research (ONR) through the CALYPSO Departmental Research Initiative (Grant N000141613130). Advanced field testing was supported by Woods Hole Oceanographic Institution internal funding. MATLAB routines for data processing are publicly available at https://github.com/mfreilich1/ecoctd_processing.2020-11-0

    UCTD and EcoCTD Observations from the CALYPSO Pilot Experiment (2018): Cruise and Data Report

    Get PDF
    From May 27, 2018 to June 02, 2018, a scientific campaign was conducted in the Alboran Sea as part of an ONR Departmental Research Initiative, CALYPSO. The pilot cruise involved two ships: the R/V Socib, tasked with sampling fixed lines repeatedly, and the NRV Alliance that surveyed along the trajectory of Lagrangian platforms. A large variety of assets were deployed from the NRV Alliance, with the objective to identify coherent Lagrangian pathways from the surface ocean to interior. As part of the field campaign, an Underway-CTD (UCTD) system was used to measure vertical profiles of salinity, temperature and other properties while steaming, to achieve closely spaced measurements in the horizontal along the ship's track. Both a UCTD probe and an biooptically augmented probe, named EcoCTD, were deployed. The EcoCTD collects concurrent physical and bio-optical observations. This report focuses exclusively on the data collected by these two underway systems. It describes th e datasets collected during the pilot cruise, as well as the important processing steps developed for the EcoCTD.Funding was provided by the Office of Naval Research under Contract #N00014161313

    A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C10020, doi:10.1029/2009JC005317.A synthetic moored array composed of five buoyancy-propelled autonomous underwater gliders was used to characterize mesoscale variability and phytoplankton distribution in a 100 km × 100 km domain in the Philippine Sea east of Luzon Strait for 10 days in May 2004. The study area, located east of the Kuroshio near the subtropical front, is dominated by strong internal tides, by energetic westward-propagating mesoscale eddies with azimuthal velocities exceeding 50 cm/s, and by a deep (130 m) maximum in chlorophyll fluorescence. Each glider in the array was instructed to maintain geographic position while repeatedly profiling to 200-m depth. Good station-keeping performance enabled the resulting series of vertical profiles to be interpreted in the same manner as a physically moored chain of instruments. Although organized primarily as a demonstration of glider capabilities, this field exercise provides a unique data set for examining biological-physical interactions in the open ocean. Here we report on the evolution of a thin layer of phytoplankton observed near the deep chlorophyll maximum. Coincident observations of fine structure in temperature and salinity suggest that the thinning process of this layer was driven primarily by physical forcing, most probably vertical shear associated with energetic diurnal internal waves, as opposed to a biological mechanism, such as convergent swimming, grazing, or spatial variation in growth rate.The Office of Naval Research provided support for fieldwork and analysis through grants N-00014-00-1-0256 and N-00014-05-1-0367

    From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address

    Salinity and temperature balances at the SPURS central mooring during fall and winter

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 56-65, doi:10.5670/oceanog.2015.06.One part of the Salinity Processes in the Upper-ocean Regional Study (SPURS) field campaign focused on understanding the physical processes affecting the evolution of upper-ocean salinity in the region of climatological maximum sea surface salinity in the subtropical North Atlantic (SPURS-1). An upper-ocean salinity budget provides a useful framework for increasing this understanding. The SPURS-1 program included a central heavily instrumented mooring for making accurate measurements of air-sea surface fluxes, as well as other moorings, Argo floats, and gliders that together formed a dense observational array. Data from this array are used to estimate terms in the upper-ocean salinity and heat budgets during the SPURS-1 campaign, with a focus on the first several months (October 2012 to February 2013) when the surface mixed layer was becoming deeper, fresher, and cooler. Specifically, we examine the salinity and temperature balances for an upper-ocean mixed layer, defined as the layer where the density is within 0.4 kg m–3 of its surface value. The gross features of the evolution of upper-ocean salinity and temperature during this fall/winter season are explained by a combination of evaporation and precipitation at the sea surface, horizontal transport of heat and salt by mixed-layer currents, and vertical entrainment of fresher, cooler fluid into the layer as it deepened. While all of these processes were important in the observed seasonal (fall) freshening at this location in the salinity-maximum region, the variability of salinity on monthly-to-intraseasonal time scales resulted primarily from horizontal advection.J.T. Farrar, A.J. Plueddemann, J.B. Edson, and the deployment of the central mooring were supported by NASA grant NNX11AE84G. L. Rainville, C. Lee, C. Eriksen, and the Seaglider program were supported by NASA grant NNX11AE78G. R. Schmitt was supported by NSF grant OCE-1129646. B. Hodges and D. Fratantoni were supported by NASA grant NNX11AE82G. The Prawler moorings were funded by PMEL. The data analysis was also supported by NASA grant NNX14AH38G
    • …
    corecore