3,261 research outputs found
SIRT1 Activity Is Linked to Its Brain Region-Specific Phosphorylation and Is Impaired in Huntington’s Disease Mice
Huntingtons disease (HD) is a neurodegenerative disorder for which there are no disease-modifying treatments. SIRT1 is a NAD+-dependent protein deacetylase that is implicated in maintaining neuronal health during development, differentiation and ageing. Previous studies suggested that the modulation of SIRT1 activity is neuroprotective in HD mouse models, however, the mechanisms controlling SIRT1 activity are unknown. We have identified a striatum-specific phosphorylation-dependent regulatory mechanism of SIRT1 induction under normal physiological conditions, which is impaired in HD. We demonstrate that SIRT1 activity is down-regulated in the brains of two complementary HD mouse models, which correlated with altered SIRT1 phosphorylation levels. This SIRT1 impairment could not be rescued by the ablation of DBC1, a negative regulator of SIRT1, but was linked to changes in the sub-cellular distribution of AMPK-α1, a positive regulator of SIRT1 function. This work provides insights into the regulation of SIRT1 activity with the potential for the development of novel therapeutic strategies
Fibroblastic reticular cell response to dendritic cells requires coordinated activity of podoplanin, CD44 and CD9
In adaptive immunity, CLEC-2+ dendritic cells (DCs) contact fibroblastic reticular cells (FRCs) inhibiting podoplanin-dependent actomyosin contractility, permitting FRC spreading and lymph node expansion. The molecular mechanisms controlling lymph node remodelling are incompletely understood. We asked how podoplanin is regulated on FRCs in the early phase of lymph node expansion, and which other proteins are required for the FRC response to DCs. We find that podoplanin and its partner proteins CD44 and CD9 are differentially expressed by specific lymph node stromal populations in vivo, and their expression in FRCs is coregulated by CLEC-2 (encoded by CLEC1B). Both CD44 and CD9 suppress podoplanin-dependent contractility. We find that beyond contractility, podoplanin is required for FRC polarity and alignment. Independently of podoplanin, CD44 and CD9 affect FRC–FRC interactions. Furthermore, our data show that remodelling of the FRC cytoskeleton in response to DCs is a two-step process requiring podoplanin partner proteins CD44 and CD9. Firstly, CLEC-2 and podoplanin binding inhibits FRC contractility, and, secondly, FRCs form protrusions and spread, which requires both CD44 and CD9. Together, we show a multi-faceted FRC response to DCs, which requires CD44 and CD9 in addition to podoplanin
Regulatory mechanisms of incomplete huntingtin mRNA splicing
Huntington's disease is caused by a CAG repeat expansion in exon 1 of the HTT gene. We have previously shown that exon 1 HTT does not always splice to exon 2 producing a small transcript (HTTexon1) that encodes the highly pathogenic exon 1 HTT protein. The mechanisms by which this incomplete splicing occurs are unknown. Here, we have generated a minigene system that recapitulates the CAG repeat-length dependence of HTTexon1 production, and has allowed us to define the regions of intron 1 necessary for incomplete splicing. We show that manipulation of the expression levels of the splicing factor SRSF6, predicted to bind CAG repeats, modulates this aberrant splicing event and also demonstrate that RNA polymerase II transcription speed regulates the levels of HTTexon1 production. Understanding the mechanisms by which this pathogenic exon 1 HTT is generated may provide the basis for the development of strategies to prevent its production
The Bone Morphogenetic Protein 2 Analogue L51P Enhances Spinal Fusion in Combination with BMP2 in an In Vivo Rat Tail Model
INTRODUCTION
Non-union and pseudoarthrosis remain major complications after spinal fusion surgery, resulting in unsatisfactory outcomes and high socio-economic costs [1,2]. Several biomaterials and osteobiologics have improved spinal fusion, including bone morphogenetic protein (BMP) 2. However, its necessary high-dose application often leads to adverse effects. L51P, a BMP-2 analogue and inhibitor of BMP antagonists, has been shown to augment BMP-induced bone formation and lower the required doses. The current study, therefore, aimed to demonstrate the effects of L51P and BMP-2 on spinal fusion in vivo.
METHODS
46 elderly Wistar rats (~12 months, 52% female, 423±78g) underwent a two-step spinal fusion surgery [3,4]. Firstly, a custom external fixator was applied in the proximal tail. Secondly, discectomy and disc replacement with a β tri-calcium-phosphate (β-TCP) carrier were conducted. Carriers were loaded with the study compounds based on random and blinded allocation into seven groups: g Digital X-rays were performed on day zero, at six weeks, and twelve weeks postoperatively. After twelve weeks, high-resolution µCT scans and histology were obtained.
RESULTS
At twelve weeks, 10 µg BMP-2, 1 µg BMP-2 + 5 µg L51P and 1 µg BMP-2 + 10 µg L51P showed significantly higher fusion rates compared to the PBS control in X-ray analysis. µCT analysis showed significantly higher fusion rates for all groups than the control group. 1 µg BMP-2 + 1 µg L51P demonstrated significantly higher fusion rates than 1 µg BMP2 alone and equivalent ossification compared to 10 µg BMP-2; higher doses of L51P did not lead to a better fusion outcome. Histological analysis confirmed the radiographical results. Figure 1 provides representative images of the seven experimental groups for each investigated read-outs, i.e., 2D X-rays, µCT and histology
Lymph node homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics
Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)–podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion
CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the United Kingdom collaborative trial of ovarian cancer screening
PURPOSE: Cancer screening strategies have commonly adopted single-biomarker thresholds to identify abnormality. We investigated the impact of serial biomarker change interpreted through a risk algorithm on cancer detection rates.
PATIENTS AND METHODS: In the United Kingdom Collaborative Trial of Ovarian Cancer Screening, 46,237 women, age 50 years or older underwent incidence screening by using the multimodal strategy (MMS) in which annual serum cancer antigen 125 (CA-125) was interpreted with the risk of ovarian cancer algorithm (ROCA). Women were triaged by the ROCA: normal risk, returned to annual screening; intermediate risk, repeat CA-125; and elevated risk, repeat CA-125 and transvaginal ultrasound. Women with persistently increased risk were clinically evaluated. All participants were followed through national cancer and/or death registries. Performance characteristics of a single-threshold rule and the ROCA were compared by using receiver operating characteristic curves.
RESULTS: After 296,911 women-years of annual incidence screening, 640 women underwent surgery. Of those, 133 had primary invasive epithelial ovarian or tubal cancers (iEOCs). In all, 22 interval iEOCs occurred within 1 year of screening, of which one was detected by ROCA but was managed conservatively after clinical assessment. The sensitivity and specificity of MMS for detection of iEOCs were 85.8% (95% CI, 79.3% to 90.9%) and 99.8% (95% CI, 99.8% to 99.8%), respectively, with 4.8 surgeries per iEOC. ROCA alone detected 87.1% (135 of 155) of the iEOCs. Using fixed CA-125 cutoffs at the last annual screen of more than 35, more than 30, and more than 22 U/mL would have identified 41.3% (64 of 155), 48.4% (75 of 155), and 66.5% (103 of 155), respectively. The area under the curve for ROCA (0.915) was significantly (P = .0027) higher than that for a single-threshold rule (0.869).
CONCLUSION: Screening by using ROCA doubled the number of screen-detected iEOCs compared with a fixed cutoff. In the context of cancer screening, reliance on predefined single-threshold rules may result in biomarkers of value being discarded
Microstructural damage of the posterior corpus callosum contributes to the clinical severity of neglect
One theory to account for neglect symptoms in patients with right focal damage invokes a release of inhibition of the right parietal cortex over the left parieto-frontal circuits, by disconnection mechanism. This theory is supported by transcranial magnetic stimulation studies showing the existence of asymmetric inhibitory interactions between the left and right posterior parietal cortex, with a right hemispheric advantage. These inhibitory mechanisms are mediated by direct transcallosal projections located in the posterior portions of the corpus callosum. The current study, using diffusion imaging and tract-based spatial statistics (TBSS), aims at assessing, in a data-driven fashion, the contribution of structural disconnection between hemispheres in determining the presence and severity of neglect. Eleven patients with right acute stroke and 11 healthy matched controls underwent MRI at 3T, including diffusion imaging, and T1-weighted volumes. TBSS was modified to account for the presence of the lesion and used to assess the presence and extension of changes in diffusion indices of microscopic white matter integrity in the left hemisphere of patients compared to controls, and to investigate, by correlation analysis, whether this damage might account for the presence and severity of patients' neglect, as assessed by the Behavioural Inattention Test (BIT). None of the patients had any macroscopic abnormality in the left hemisphere; however, 3 cases were discarded due to image artefacts in the MRI data. Conversely, TBSS analysis revealed widespread changes in diffusion indices in most of their left hemisphere tracts, with a predominant involvement of the corpus callosum and its projections on the parietal white matter. A region of association between patients' scores at BIT and brain FA values was found in the posterior part of the corpus callosum. This study strongly supports the hypothesis of a major role of structural disconnection between the right and left parietal cortex in determining 'neglect'
- …