12 research outputs found

    V2O5 nanowires coated yarn based temperature sensor with wireless data transfer for smart textiles

    Get PDF
    Smart textile with capabilities to sense different stimuli like temperature, pressure etc. are of considerable interest in applications such as sports, fashion, healthcare and robotics etc. The seamless integration of various sensors is desired for effective use of smart textiles in these applications. To this end, here, we present a yarn based wireless temperature sensor developed by modifying a P(VDF-TrFE) coated stainless steel yarn with vanadium pentoxide (V 2 O 5 ) nanowires (NWs). The current-voltage (I-V) characteristics and the temperature sensing performance of the devices are evaluated between 5-50°C with a step increase of 5°C. The unpacked device exhibits a sensitivity of 3.7 %/°C with a response time of 9s. The device is encapsulated with nanosilica/epoxy polymeric layer and its influence on sensors performance is also analyzed. After encapsulation, the device showed more linear response, but with slightly reduced sensitivity of 2.18 %/°C. Moreover, the effect of mechanical bending cycles on sensing performance of packaged device is studied. The sensor showed linear response even after 2000 bending cycles, but sensitivity was reduced to 1.257%/°C. Finally, the temperature sensor data is wirelessly transferred to demonstrate the potential use of developed sensors in above applications

    Eco-friendly textile-based wearable humidity sensor with multinode wireless connectivity for healthcare applications

    Get PDF
    Textile-based wearable humidity sensors are of great interest for human healthcare monitoring as they can provide critical human-physiology information. The demand for wearable and sustainable sensing technology has significantly promoted the development of eco-friendly sensing solutions for potential real-world applications. Herein, a biodegradable cotton (textile)-based wearable humidity sensor has been developed using fabsil-treated cotton fabric coated with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) sensing layer. The structural, chemical composition, hygroscopicity, and morphological properties are examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), contact angle measurement, and scanning electron microscopy (SEM) analysis. The developed sensor exhibited a nearly linear response (Adj. R-square value observed as 0.95035) over a broad relative humidity (RH) range from 25 to 91.5%RH displaying high sensitivity (26.1%/%RH). The sensor shows excellent reproducibility (on replica sensors with a margin of error ±1.98%) and appreciable stability/aging with time (>4.5 months), high flexibility (studied at bending angles 30°, 70°, 120°, and 150°), substantial response/recovery durations (suitable for multiple applications), and highly repeatable (multicyclic analysis) sensing performance. The prospective relevance of the developed humidity sensor toward healthcare applications is demonstrated via breathing rate monitoring (via a sensor attached to a face mask), distinguishing different breathing patterns (normal, deep, and fast), skin moisture monitoring, and neonatal care (diaper wetting). The multinode wireless connectivity is demonstrated using a Raspberry Pi Pico-based system for demonstrating the potential applicability of the developed sensor as a real-time humidity monitoring system for the healthcare sector. Further, the biodegradability analysis of the used textile is evaluated using the soil burial degradation test. The work suggests the potential applicability of the developed flexible and eco-friendly humidity sensor in wearable healthcare devices and other humidity sensing applications

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Polydimethylsiloxane (PDMS) foam-based fully 3D printed soft pressure sensors

    No full text
    No abstract available

    Spectrum of asymptomatic bacteriuria in renal allograft recipients and its short-term effect on graft outcome: Experience of a Tertiary Care Center from Northwest India

    No full text
    Introduction: Asymptomatic bacteriuria (AB) is not uncommon after renal transplantation with limited data from developing countries; we did this study to assess the microbiological spectrum and its short-term graft outcome in our tertiary care center. Materials and Methods: It is a prospective observational study. We included all the patients who underwent renal transplantation over a period of 18 months, from January 2016 to June 2017. Patients who had indwelling urinary catheter beyond 5 days posttransplant and those with persistent graft dysfunction within 6 months of transplant were excluded from the study. Results: A total of 67 patients were included in the study with a mean age of 33.78 ± 8.91 years and a male-to-female ratio of 7:1; live-related donors were 36 (53.73%), live unrelated were 19 (28.35%), and 12 (17.91%) were cadaveric renal allograft recipients (RARs). Twenty-eight (41.79%) patients had 42 episodes of AB over 6 months of follow-up. The maximum episodes occurred within 1 month of postrenal transplantation, and 42 out of 67 (62.68%) RARs had bacterial growth in their double-J ureteral stents (USs). The most frequently isolated pathogen from urine was Escherichia coli (n = 14, 33.33%), whereas Pseudomonas aeruginosa (n = 10, 23.80%) was in US culture (USC). The prevalence of AB was higher in cadaveric RARs compared to live RARs (83.33% vs. 32.72%, P = 0.001) and with bacterial growth in the USC compared to those who did not show any growth in USs (57.14% vs. 16.0%, P = 0.001). However, the estimated glomerular filtration rate between those with AB and those without at 6 months of follow-up (66.36 ± 14.98 vs. 66.10 ± 13.83 ml/min/1.73 m2, P = 0.943) was not different. Conclusion: AB is not uncommon in RARs and it is more common in cadaveric RARs and those with growth in US culture without compromise in allograft function at 6 months postrenal transplant

    Chemoproteomics of an Indole-Based Quinone Epoxide Identifies Druggable Vulnerabilities in Vancomycin-Resistant Staphylococcus aureus

    No full text
    Publisher's version (útgefin grein)The alarming global rise in fatalities from multidrug-resistant Staphylococcus aureus (S. aureus) infections has underscored a need to develop new therapies to address this epidemic. Chemoproteomics is valuable in identifying targets for new drugs in different human diseases including bacterial infections. Targeting functional cysteines is particularly attractive, as they serve critical catalytic functions that enable bacterial survival. Here, we report an indole-based quinone epoxide scaffold with a unique boat-like conformation that allows steric control in modulating thiol reactivity. We extensively characterize a lead compound (4a), which potently inhibits clinically derived vancomycin-resistant S. aureus. Leveraging diverse chemoproteomic platforms, we identify and biochemically validate important transcriptional factors as potent targets of 4a. Interestingly, each identified transcriptional factor has a conserved catalytic cysteine residue that confers antibiotic tolerance to these bacteria. Thus, the chemical tools and biological targets that we describe here prospect new therapeutic paradigms in combatting S. aureus infections.The authors thank the Department of Biotechnology (DBT), Government of India (BT/PR15848/MED/29/1025/2016 to H.C. and S.C.), a Wellcome Trust DBT India Alliance Intermediate Fellowship (IA/I/15/2/502058 to S.S.K.) and a DST-FIST Infrastructure Development Grant (to IISER Pune Biology) for the financial support for our research. The Council for Scientific and Industrial Research (CSIR) and the Department of Science and Technology—Innovation in Science Pursuit for Inspired Research (DST-INSPIRE) for graduate student fellowships.Peer Reviewe
    corecore