2 research outputs found

    Quest for hyperheavy toroidal nuclei

    Get PDF
    We investigate the possibility of observing toroidal breakup configurations in Au+Au collisions using the CHIMERA multidetector system. BUU simulations indicate that the threshold energy for toroidal configuration formation is around 23 MeV/nucleon. The simulations of the Decay process using the static model code ETNA indicate the sensitivity of some observables to different studied break-up geometries

    Light fragments production and isospin dependences in Sn+Ni and Sn+Al central collisions at 25MeV/A and 35MeV/A from reverse/isospin experiments

    Get PDF
    This paper presents the physical analysis results for the following reactions: 124Sn+64Ni, 124Sn+27Al, 124Sn+58Ni at 35MeV/A and 25MeV/A. The main goal of this studies was to find observables sensitive to isospin effects and to present the similarities/differences between the systems characterised by various charge asymmetry factor, defined as I = (NZ)=A. Theoretical simulations based on the Quantum Molecular Dynamics (QMD) model have been performed in order to compare them with the results of the analysis of experimental data. The first phase of the reaction was carried out with the code CHIMERA [1]. The sequential decay of hot fragments was simulated by the code COOLER [2]. The conclusions are as follows: there are observables sensitive to the isospin of the system, such as the Light Charged Particles (LCP) emission and their sensitivity is demonstrated more prominently in the analysis of central collisions at 35MeV/A. The theoretical calculations do not reproduce these relations well
    corecore