49 research outputs found

    ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSCGeneration, but It Is Dispensable for the Maintenance and Induction of Pluripotency

    Get PDF
    The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of theL1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was dispensable for both the proliferation and pluripotency of ESCs.We found rapid and robust activation of ECAT11 in fibroblasts after the forced expression of transcription factors that can give rise pluripotency in somatic cells.However, iPS cells could be established from ECAT11-null fibroblasts. Our data demonstrate thedispensability of ECAT11/L1td1 in pluripotency, despite its specific expression

    Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects

    Get PDF
    Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics

    Efficient, repeated adenovirus-mediated gene transfer in mice lacking both tumor necrosis factor alpha and lymphotoxin alpha.

    No full text
    The efficiency of adenovirus-mediated gene transfer is now well established. However, the cellular and the humoral immune responses triggered by vector injection lead to the rapid elimination of the transduced cells and preclude any efficient readministration. The present investigation focuses on the role of tumor necrosis factor alpha (TNF-a), a proinflammatory cytokine, and the related cytokine lymphotoxin a (LTa), in mounting an immune reaction against recombinant adenovirus vectors. After gene transfer in the liver, mice genetically deficient for both cytokines (TNF-a/LTa2/2), in comparison with normal mice, presented a weak acute-phase inflammatory reaction, a reduction in cellular infiltrates in the liver, and a severely impaired T-cell proliferative response to both Adenoviral and transgene product antigens. Moreover, we observed a strong reduction in the humoral response to the vector and the transgene product, with a drastic reduction of anti-adenovirus immunoglobulin A and G antibody isotypes. In addition, the reduction in antibody response observed in TNF-a/LTa2/2 and TNF-a/LTa1/2 mice versus TNF-a/LTa1/1 mice links antibody levels to TNF-a/LTa gene dosage. Due to the absence of neutralizing antibodies, the TNF-a/LTa knockout mice successfully express a second gene transduced by a second vector injection. The discovery of the pivotal role played by TNF-a in controlling the antibody response against adenovirus will allow more efficient adenovirus-based strategies for gene therapy to be proposed. Adenovirus is a powerful vector for gene transfer to man

    Respective roles of TNF-alpha and IL-6 in the immune response-elicited by adenovirus-mediated gene transfer in mice.

    No full text
    International audienceThe immunogenicity of recombinant adenoviruses (Ad) constitutes a major concern for their use in gene therapy. Antibody- and cell-mediated immune responses triggered by adenoviral vectors hamper long-term transgene expression and efficient viral readministration. We previously reported that interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha play an essential role in both the acute phase and antibody response against Ad, respectively. As TNF-alpha controls the immune response and the development of the immune system, we examined here the consequence of blockade of TNF-alpha activity through Ad-mediated gene delivery of a dimeric mouse TNFR1-IgG fusion protein on transgene expression from a second Ad. Ad encoding TNFR1-IgG (AdTNFR1-Ig) was injected intravenously along with Ad encoding beta-galactosidase or alpha1-antitrypsin transgene in wild-type (IL-6(+/+)) but also in IL-6-deficient mice (IL-6(-/-)) to analyze how TNF-alpha and IL-6 diminish liver gene transfer efficacy. Blockade of TNF-alpha leads to increased transgene expression in both wild-type and IL-6(-/-) mice due to a reduced inflammatory response and to diminished recruitment of macrophages and NK cells towards the liver. Antibody responses against adenoviral particles and expressed transgenes were only delayed in AdTNFR1-Ig-treated wild-type mice, but were markedly reduced in AdTNFR1-Ig-treated IL-6(-/-) mice. Finally, treatment of mice with etanercept, a clinically approved anti-TNF-alpha drug, confirmed the importance of controlling proinflammatory cytokines during gene therapy by adenoviral vectors.Gene Therapy advance online publication, 16 November 2006; doi:10.1038/sj.gt.3302885

    Construction of Avian Adenovirus CELO Recombinants in Cosmids

    No full text
    The avian adenovirus CELO is a promising vector for gene transfer applications. In order to study this potentiality, we developed an improved method for construction of adenovirus vectors in cosmids that was used to engineer the CELO genome. For all the recombinant viruses constructed by this method, the ability to produce infectious particles and the stability of the genome were evaluated in a chicken hepatocarcinoma cell line (LMH cell line). Our aim was to develop a replication-competent vector for vaccination of chickens, so we first generated knockout point mutations into 16 of the 22 unassigned CELO open reading frames (ORFs) to determine if they were essential for virus replication. As the 16 independent mutant viruses replicated in our cellular system, we constructed CELO genomes with various deletions in the regions of these nonessential ORFs. An expression cassette coding for the enhanced green fluorescent protein (eGFP) was inserted in place of these deletions to easily follow expression of the transgene and propagation of the vector in cell monolayers. Height-distinct GFP-expressing CELO vectors were produced that were all replication competent in our system. We then retained the vector backbone with the largest deletion (i.e., 3.6 kb) for the construction of vectors carrying cDNA encoding infectious bursal disease virus proteins. These CELO vectors could be useful for vaccination in the chicken species
    corecore