38 research outputs found

    Calorimetric Analysis Using DNA Thermal Stability to determine protein concentration

    Get PDF
    It was recently reported for two globular proteins and a short DNA hairpin in NaCl buffer that values of the transition heat capacities, Cp,DNA and Cp,PRO for equal concentrations (mg/mL) of DNA and proteins, are essentially equivalent (differ by less than 1%). Additional evidence for this equivalence is presented that reveals this phenomenon does not depend on DNA sequence, buffer salt, or Tm. Sequences of two DNA hairpins were designed to confer a near 20Ā°C difference in their Tmā€™s. For the molecules, in NaCl and CsCl buffer the evaluated Cp,PRO and Cp,DNA were equivalent. Based on the equivalence of transition heat capacities, a calorimetric method was devised to determine protein concentrations in pure and complex solutions. The scheme uses direct comparisons between the thermodynamic stability of a short DNA hairpin standard of known concentration, and thermodynamic stability of protein solutions of unknown concentrations. In all cases, evaluated protein concentrations determined from the DNA standard curve agreed with the UV-Vis concentration for monomeric proteins. For samples of multimeric proteins, streptavidin (tetramer), Herpes Simplex Virus glycoprotein D (trimer/dimer), and a 16 base pair DNA duplex (dimer), evaluated concentrations were greater than determined by UV-Vis by factors of 3.94, 2.65, and 2.15, respectively

    Multiplex SNP Discrimination

    Get PDF
    Multiplex hybridization reactions of perfectly matched duplexes and duplexes containing a single basepair mismatch (SNPs) were investigated on DNA microarrays. Effects of duplex length, G-C percentage, and relative position of the SNP on duplex hybridization and SNP resolution were determined. Our theoretical model of multiplex hybridization accurately predicts observed results and implicates target concentration as a critical variable in multiplex SNP detection

    DNA multiplex hybridization on microarrays and thermodynamic stability in solution: a direct comparison

    Get PDF
    Hybridization intensities of 30 distinct short duplex DNAs measured on spotted microarrays, were directly compared with thermodynamic stabilities measured in solution. DNA sequences were designed to promote formation of perfect match, or hybrid duplexes containing tandem mismatches. Thermodynamic parameters Ī”HĀ°, Ī”SĀ° and Ī”GĀ° of melting transitions in solution were evaluated directly using differential scanning calorimetry. Quantitative comparison with results from 63 multiplex microarray hybridization experiments provided a linear relationship for perfect match and most mismatch duplexes. Examination of outliers suggests that both duplex length and relative position of tandem mismatches could be important factors contributing to observed deviations from linearity. A detailed comparison of measured thermodynamic parameters with those calculated using the nearest-neighbor model was performed. Analysis revealed the nearest-neighbor model generally predicts mismatch duplexes to be less stable than experimentally observed. Results also show the relative stability of a tandem mismatch is highly dependent on the identity of the flanking Watsonā€“Crick (w/c) base pairs. Thus, specifying the stability contribution of a tandem mismatch requires consideration of the sequence identity of at least four base pair units (tandem mismatch and flanking w/c base pairs). These observations underscore the need for rigorous evaluation of thermodynamic parameters describing tandem mismatch stability

    Electrical detection of the temperature induced melting transition of a DNA hairpin covalently attached to gold interdigitated microelectrodes

    Get PDF
    The temperature induced melting transition of a self-complementary DNA strand covalently attached at the 5ā€² end to the surface of a gold interdigitated microelectrode (GIME) was monitored in a novel, label-free, manner. The structural state of the hairpin was assessed by measuring four different electronic properties of the GIME (capacitance, impedance, dissipation factor and phase angle) as a function of temperature from 25Ā°C to 80Ā°C. Consistent changes in all four electronic properties of the GIME were observed over this temperature range, and attributed to the transition of the attached single-stranded DNA (ssDNA) from an intramolecular, folded hairpin structure to a melted ssDNA. The melting curve of the self-complementary single strand was also measured in solution using differential scanning calorimetry (DSC) and UV absorbance spectroscopy. Temperature dependent electronic measurements on the surface and absorbance versus temperature values measured in solution experiments were analyzed assuming a two-state process. The model analysis provided estimates of the thermodynamic transition parameters of the hairpin on the surface. Two-state analyses of optical melting data and DSC measurements provided evaluations of the thermodynamic transition parameters of the hairpin in solution. Comparison of surface and solution measurements provided quantitative evaluation of the effect of the surface on the thermodynamics of the melting transition of the DNA hairpin

    Diagnostic Platform for Current Health Status Monitoring

    Get PDF
    Our approach is based on physical measurements of blood plasma and exploits the plethora of information contained in the human plasma proteome, as a reporter of human health status. The assay involves collection and analysis ofthermograms of plasma from human blood measured by differential scanning calorimetry (DSC). Plasma thermograms arise from the temperature-induced denaturation profile of proteins within blood plasma measured by DSC. This insightful measurement thereby provides a snapshot of the current state of the human plasma proteome which directly informs on overall systemic health. Such measurements have been shown to be highly accurate and sensitive indicators of health status. Remarkably, plasma samples from healthy ā€œnormalā€ individuals display a signaturethermogram distinct from thermograms for samples from diseased individuals. Attractive features of the plasma thermogram diagnostic platform include the fact it is based on a novel technique, distinct from current genetic biomarkers and other molecular diagnostic approaches. The assay requires a small quantity of material (100 ĀµL per sample), has quick turnaround time (less than 2 hours) and very low test COGS. Assay results are quantitative, robust and reproducible due to fundamental properties of proteins in the plasma sample. The assay can be automated for high-throughput applications

    Ligand Binding Constants for Human Serum Albumin Evaluated by Ratiometric Analysis of DSC Thermograms.

    No full text
    This paper describes an expanded application of our recently reported method (Eskew et al., Analytical Biochemistry 621,1 2021) utilizing thermogram signals for thermal denaturation measured by differential scanning calorimetry. Characteristic signals were used to quantitatively evaluate ligand binding constants for human serum albumin. In our approach the ensemble of temperature dependent calorimetric responses for various protein-ligand mixtures and native HSA were compared, in a ratiometric manner, to extract binding constants and stoichiometries. Protein/ligand mixtures were prepared at various ligand concentrations and subjected to thermal denaturation analysis by calorimetry. Measurements provided the melting temperature, T, and free-energyĪ”G(37Ā°C) for melting ligand-bound Albumin as a function of ligand concentration. Concentration dependent behaviors of these parameters derived from protein/ligand mixtures were used to construct dose-response curves. Fitting of dose-response curves yielded quantitative evaluation of the ligand binding constant and semi-quantitative estimates of the binding stoichiometry. Many of the ligands had known binding affinity for Albumin with binding constants reported in the literature. Evaluated binding parameters for the ligands impressively agreed with reported literature values determined using other standard experimental methods. Results are reported for 29 drug ligands binding to Albumin. These validate our calorimetry-based process for applications in pre-clinical drug screening

    Thermal Analysis of Protein Stability and Ligand Binding in Complex Media

    No full text
    Screening of ligands that can bind to biologic products of in vitro expression systems typically requires some purification of the expressed biologic target. Such purification is often laborious and time consuming as well as a limiting challenge. What is required, representing an enormous advantage, is the ability to screen expressed proteins in the crude lysate stage without purification. For that purpose, we explore here, the utility of differential scanning calorimetry (DSC) measurements for detecting the presence of specific proteins and their interactions with ligands in the complex media where they were prepared, i.e. crude lysates. Model systems were designed to mimic analogous conditions comparable to those that may be encountered in actual in vitro expression systems. Results are reported for several examples where DSC measurements distinctly showed differences in the thermal denaturation behaviors of the crude lysate alone, proteins and proteins plus binding ligands added to the crude lysate. Results were obtained for Streptavidin/Biotin binding in E. coli lysate, and binding of Angiotensin Converting Enzyme 2 (ACE2) by captopril or lisinopril in the lysate supernatant derived from cultured Human Kidney cells (HEK293). ACE2 binding by the receptor binding domain (RBD) of SARS-CoV-2 was also examined. Binding of ACE2 by RBD and lisinopril were similar and consistent with the reported ACE2 inhibitory activity of lisinopril

    Equivalence of the Transition Heat Capacities of Proteins and DNA

    No full text
    It has been reported for many globular proteins that the native heat capacity at 25Ā°C, per gram, is the same. This has been interpreted to indicate that heat capacity is a fundamental property of native proteins that provides important information on molecular structure and stability. Heat capacities for both proteins and DNA has been suggested to be related to universal effects of hydration/solvation on native structures. Here we report on results from thermal denaturation analysis of two well-known proteins, human serum albumin and lysozyme, and a short DNA hairpin. The transition heat capacities at the Tm for the three molecules were quantitatively evaluated by differential scanning calorimetry. When normalized per gram rather than per mol the transition heat capacities were found to be precisely equivalent. This observation for the transition heat capacities of the proteins is consistent with previous reports. However, an identical transition heat capacity for DNA has not been reported and was unexpected. Further analysis of the collected data suggested a mass dependence of hydration effects on thermal denaturation that is preserved at the individual protein amino acid and DNA base levels. Equivalence of transition heat capacities suggests the possibility of a universal role of hydration effects on the thermal stability of both proteins and DNA

    Tribute for J. Michael Schurr

    No full text
    corecore