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Multiplex SNP Discrimination
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ABSTRACT Multiplex hybridization reactions of perfectly matched duplexes and duplexes containing a single basepair
mismatch (SNPs) were investigated on DNA microarrays. Effects of duplex length, G-C percentage, and relative position of the
SNP on duplex hybridization and SNP resolution were determined. Our theoretical model of multiplex hybridization accurately
predicts observed results and implicates target concentration as a critical variable in multiplex SNP detection.
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Personalized medicine, medical diagnosis, and prognosis

based upon the unique genotype of individuals require the

diagnostic capability of detecting and discerning multiple

genetic markers (targets) within the genome of each individ-

ual. Multiplex assays, involving the simultaneous hybridiza-

tion and detection of multiple genetic markers, promise to be a

cornerstone of modern genetic testing and personalized geno-

typing. However, before the potential of multiplex assays and

the prospects for personalized medicine can be fully realized,

a more complete understanding of the underlying physics and

chemistry of multiplex hybridization must be established.

Such an analytical understanding provides superior insight

into design and interpretation of multiplex hybridization reac-

tions (1). In this communication, our analytical approach has

been applied to the design of a multiplex assay for the discrim-

ination of single nucleotide polymorphisms.

Single nucleotide polymorphisms (SNPs) that occur in the

sequences of the human genome constitute the most ubiq-

uitous and subtle genetic variations between individuals and

different populations of individuals. With rapid accumula-

tion of personal genomic sequence information, the influence

of SNPs on many important phenotypes, and the role of

SNPs in disease susceptibility and the response to therapeu-

tic treatment, are coming to light. This emergence of informa-

tion makes it ever more important to develop high-throughput,

and sensitive, reliable, and rapid SNP genotyping assays that

can clearly discriminate and resolve SNPs from their per-

fectly matched duplex counterparts.

Nucleic acid diagnostic assays based on multiplex hy-

bridization offer unprecedented capabilities for systematic

high-throughput screening, discrimination, and analysis of

large numbers of DNA (and RNA) sequences. However,

multiplex hybridization reactions are much more complex

than those composed of only two complementary single

strands. Increased complexity in a multiplex hybridization

environment arises from the vast number of mispairing

interactions that can occur, leading to crosshybridization and

mismatched duplex formation (1). Complexity of the mul-

tiplex environment and the resulting competition between

perfect match and mismatch strands strongly influence both

kinetic and equilibrium behaviors and severely alter amounts

of overall reaction products. Several authors have attempted

to describe effects of such competition and associated hy-

bridization errors on multiplex reaction results (1–9).

Initial theoretical and numerical studies of multiplex hy-

bridization kinetics have revealed various distinct temporal

behaviors with unexpected consequences due to competition

in reactions between perfect match and mismatch duplexes

(1). These results suggested that the effects of competitive

hybridization might be utilized for optimizing SNP detec-

tion. Experiments described below were performed to inves-

tigate conditions for observation of optimum discriminatory

behavior of individual probe/target subsystems in a complex

(multiplex) hybridization environment.

Experimental setup consisted of six subsystems and two

controls spotted to a glass microarray slide with the general

design and sequences shown in Fig. 1. Each subsystem was

composed of different probe pairs. The targets for each

subsystem were designed to form either a perfect match

duplex, or a duplex containing a single basepair mismatch

with each of the probes in the subsystem. Two control probes

having the same G-C composition were also spotted at var-

ious positions on the microarray. Target strands labeled with

Cy-3 were hybridized in multiplex fashion (i.e., all in the

same mix) to microarrays containing 14 probes (six probe

pairs and two controls) located in at least four different

places on the microarray; in total, each array contained 234

individual probe spots. Experiments were conducted at 25�,
40�, and 55�C.
At incubation times of 5, 10, 15, 20, 25, 30, 45, 60, 90,

and 120 min, a microarray was removed, washed, fixed, and

read. The average fractional intensities were determined and

are displayed in Fig. 2. Solid lines drawn through the data

points are scaled predictions of our theoretical (numerical)

model. For each subsystem, the predicted curve for the
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perfect match duplex was first normalized, and then uni-

formly scaled to the equilibrium value, averaged over all

temperatures, of the perfect match intensity of that subsys-

tem. Scaling factors varied from 0% to 40%. Temperature in

the fitting was allowed to vary from 25� to 55�C, with best

results achieved at an average of 35 6 10�C. As seen in the

figure, a reasonably good fit of the data is obtained for both

perfect match and SNP duplexes.

Clear resolution between perfect match and SNP du-

plexes, where the perfect match duplex intensity was signif-

icantly higher than that of the SNP duplex, was seen in

nearly every case. In those cases where resolution was less

clear, the SNP (mismatch) occurred on the ultimate 39 end of
the probe molecule. Collectively, results in Fig. 2 indicate

that better discrimination occurs for SNPs that lie in the

middle of shorter duplexes. Recall, these reactions took place

in a multiplex hybridization environment where all targets were

present simultaneously in the reaction mixture. Such consis-

tent resolution further indicates that for the probe/target sub-

systems that were designed and utilized, crosshybridization

FIGURE 1 Design of probes (left) and sequences (right). Target strandswere synthesized on the 100 nM scale with Cy-3 on the 59 end.

DNA probe and target strandswere synthesized, with standard purification, and used directly as obtained from the commercial supplier

(IDT, Coralville, IA). Probes were spotted using a 50 mM DNA solution (the actual concentration on the spot is not precisely known, but

is assumed to be the same at each spot). Sequences contained 18 or 24 bases and varied in G-C% from 30% to 60%. SNP positions

(indicated by brackets) were either in the middle or on the 39 end.

FIGURE 2 Plots of intensity versus hybridization time for each of the targets shown in Fig. 2 with the probe pairs (a–f) and two

controls (g). The six target strands and two controls were hybridized by adding a 10 mM solution of target to microarrays incubated at

25�, 40�, and 55�C (diamonds, triangles, and squares, respectively) and allowed to react for varying times from 5 min to 2 h before

washing, fixing, and reading. Solid curves depict scaled best fits of simulated kinetics from the theoretical model; theoretically

predicted curves were fit to experimental data for each subsystem (see text). Blue colors represent perfect match duplex intensities,

green represents SNP intensities. Average standard deviation is approximately the size of the symbols.
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between subsystem components was not a significant factor.

Under these conditions, the effects of temperature from 25� to
55�C are minimal.

Although SNP discrimination was evident, optimum dis-

criminatory behavior was not observed in these initial

experiments. With the goal of achieving enhanced SNP

discrimination, kinetic simulations of the multiplex system

were performed and calibrated with experimental data.

Results for a representative target-probe set are shown as

solid curves in Fig. 3. The upper blue and green curves were

calculated assuming a relatively high theoretical target-probe

concentration ratio. These curves fit the data in Fig. 2, and

are shown as they appear in the model calculation (before

scaling). The lower pair of solid curves in Fig. 3 shows

results of the simulated experiment at significantly lower

target concentration. The model predicts enhanced discrim-

inatory behavior should be observed if the target-probe

concentration ratio used in the calculations is reduced by a

factor of 104. This enhanced resolution suggests that a lower

abundance of available target leads to a competitive dynamic

between perfect match and SNP probes, which in turn leads

to displacement of less favorable SNP reactions.

To test this prediction, an identical series of hybridization

experiments was performed with the same microarray design

and same target strand mixture added, except that the concen-

tration of added targets was reduced to 400 pM, a 2.5 3 104

lower relative concentration of target. Representative results

are shown as square symbols in Fig. 3. A complete analysis

and report of these, and additional relevant microarray exper-

iments that have been performed, will be described in a sub-

sequent publication (D. J. Fish, M. T. Horne, G. P. Brewood,

and A. S. Benight, unpublished).

In summary, results that are presented reveal several

interesting features of multiplex SNP hybridization and

detection: 1), Hybridization is essentially complete, and SNP

resolution is obtained in 1–2 h. 2), Better resolution is

obtained when the SNP is located near the middle of the

strand versus the ultimate end. 3), Better SNP resolution is

obtained when shorter sequence fragments are employed. 4),

Better resolution is obtained in higher GC% sequences. 5),

Target concentration is a critical experimental parameter in

achieving optimal discrimination of SNPs.

This study clearly demonstrates how our rigorous theo-

retical model provides guidance in experimental design as

well as interpretation. Other experimental observations of

enhanced discrimination of SNP duplexes due to competitive

dynamics were also recently reported (10). These, along with

results reported here, validate the efficacy of our theoretical

approach to experimental design. Such analysis should prove

invaluable in the future design of specific genotype assays,

and find a central role in enhancing microarray performance

and advancing personalized medicine.
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FIGURE 3 Theoretical and experimental results of SNP dis-

crimination experiments. Solid curves display predicted behav-

ior at a high concentration ratio (top set of curves) and a lower

ratio (bottom set). Data points show best fit (within one standard

deviation) of experimental results to numerical prediction. Tri-

angle markers indicate high concentration ratio, square markers

indicate lower ratio. Blue color refers to perfect match duplex

intensity, green to mismatch.
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