3,156 research outputs found

    Disentanglement of two harmonic oscillators in relativistic motion

    Full text link
    We study the dynamics of quantum entanglement between two Unruh-DeWitt detectors, one stationary (Alice), and another uniformly accelerating (Rob), with no direct interaction but coupled to a common quantum field in (3+1)D Minkowski space. We find that for all cases studied the initial entanglement between the detectors disappears in a finite time ("sudden death"). After the moment of total disentanglement the correlations between the two detectors remain nonzero until late times. The relation between the disentanglement time and Rob's proper acceleration is observer dependent. The larger the acceleration is, the longer the disentanglement time in Alice's coordinate, but the shorter in Rob's coordinate.Comment: 16 pages, 8 figures; typos added, minor changes in Secs. I and

    Dynamics of Atom-Field Entanglement from Exact Solutions: Towards Strong Coupling and Non-Markovian Regimes

    Full text link
    We examine the dynamics of bipartite entanglement between a two-level atom and the electromagnetic field. We treat the Jaynes-Cummings model with a single field mode and examine in detail the exact time evolution of entanglement, including cases where the atomic state is initially mixed and the atomic transition is detuned from resonance. We then explore the effects of other nearby modes by calculating the exact time evolution of entanglement in more complex systems with two, three, and five field modes. For these cases we can obtain exact solutions which include the strong coupling regimes. Finally, we consider the entanglement of a two-level atom with the infinite collection of modes present in the intracavity field of a Fabre-Perot cavity. In contrast to the usual treatment of atom-field interactions with a continuum of modes using the Born-Markov approximation, our treatment in all cases describes the full non-Markovian dynamics of the atomic subsystem. Only when an analytic expression for the infinite mode case is desired do we need to make a weak coupling assumption which at long times approximates Markovian dynamics.Comment: 12 pages, 5 figures; minor changes in grammar, wording, and formatting. One unnecessary figure removed. Figure number revised (no longer counts subfigures separately

    Light from Cascading Partons in Relativistic Heavy-Ion Collisions

    Get PDF
    We calculate the production of high energy photons from Compton and annihilation processes as well as fragmentation off quarks in the parton cascade model. The multiple scattering of partons is seen to lead to a substantial production of high energy photons, which rises further when parton multiplication due to final state radiation is included. The photon yield is found to be proportional to the number of collisions among the cascading partons.Comment: revised version: 4 pages, 4 figures, uses REVTEX

    Prevention and control of apple scab

    Get PDF
    Improved prevention and control of apple scab caused by Venturia inaequalis is aimed at without the use of copper containing products in the Repco-project. Substantial progress is made in selection of potential products against summer epidemics. A patent application is made for E73. New effective biocontrol agents are selected to reduce inoculum during winter. The product potassium bicarbonate has shown good efficacy and Repco contributes to the registration of this product in Europe. Earthworms tended to be stimulated to consume apple leaves treated with amino acids or beetpulp, especially when applied fresh under controlled environmental condi-tons

    Summing free unitary random matrices

    Full text link
    I use quaternion free probability calculus - an extension of free probability to non-Hermitian matrices (which is introduced in a succinct but self-contained way) - to derive in the large-size limit the mean densities of the eigenvalues and singular values of sums of independent unitary random matrices, weighted by complex numbers. In the case of CUE summands, I write them in terms of two "master equations," which I then solve and numerically test in four specific cases. I conjecture a finite-size extension of these results, exploiting the complementary error function. I prove a central limit theorem, and its first sub-leading correction, for independent identically-distributed zero-drift unitary random matrices.Comment: 17 pages, 15 figure

    Geometrically induced singular behavior of entanglement

    Get PDF
    We show that the geometry of the set of quantum states plays a crucial role in the behavior of entanglement in different physical systems. More specifically it is shown that singular points at the border of the set of unentangled states appear as singularities in the dynamics of entanglement of smoothly varying quantum states. We illustrate this result by implementing a photonic parametric down conversion experiment. Moreover, this effect is connected to recently discovered singularities in condensed matter models.Comment: v2: 4 pags, 4 figs. A discussion before the proof of Proposition 1 and tomographic results were included, Propostion 2 was removed and the references were fixe

    Distribution of G-concurrence of random pure states

    Full text link
    Average entanglement of random pure states of an N x N composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant we characterize the probability distribution P(D). Similar results are obtained for the rescaled N-th root of the determinant, called G-concurrence. We show that in the limit N→∞N\to\infty this quantity becomes concentrated at a single point G=1/e. The position of the concentration point changes if one consider an arbitrary N x K bipartite system, in the joint limit N,K→∞N,K\to\infty, K/N fixed.Comment: RevTeX4, 11 pages, 4 Encapsuled PostScript figures - Introduced new results, Section II and V have been significantly improved - To appear on PR

    Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization

    Get PDF
    We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic epep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, and find encouraging results. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA collisions.Comment: 44 pages plus 14 postscript figure

    Imperfect Linear Optical Photonic Gates with Number-Resolving Photodetection

    Full text link
    We use the numerical optimization techniques of Uskov et al. [PRA 81, 012303 (2010)] to investigate the behavior of the success rates for KLM style [Nature 409, 46 (2001)] two- and three-qubit entangling gates. The methods are first demonstrated at perfect fidelity, and then extended to imperfect gates. We find that as the perfect fidelity condition is relaxed, the maximum attainable success rates increase in a predictable fashion depending on the size of the system, and we compare that rate of increase for several gates.Comment: 7 pages, 7 figure

    Practical recommendations for measuring rates of visual field change in glaucoma

    Get PDF
    To date, there has been a lack of evidence-based guidance on the frequency of visual field examinations required to identify clinically meaningful rates of change in glaucoma. The objective of this perspective is to provide practical recommendations for this purpose. The primary emphasis is on the period of time and number of examinations required to measure various rates of change in mean deviation (MD) with adequate statistical power. Empirical data were used to obtain variability estimates of MD while statistical modelling techniques derived the required time periods to detect change with various degrees of visual field variability. We provide the frequency of examinations per year required to detect different amounts of change in 2, 3 and 5 years. For instance, three examinations per year are required to identify an overall change in MD of 4 dB over 2 years in a patient with average visual field variability. Recommendations on other issues such as examination type, strategy and quality are also made
    • …
    corecore