110 research outputs found

    The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heme acquisition machinery in <it>Streptococcus pyogenes </it>is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established.</p> <p>Results</p> <p>The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, recombinant Shr protein was prepared. The purified Shr displays a spectrum typical of hemoproteins, indicating that Shr binds heme and acquires heme from <it>Escherichia coli </it>hemoproteins in vivo. Spectral analysis of Shr and Shp isolated from a mixture of Shr and heme-free Shp (apoShp) indicates that Shr and apoShp lost and gained heme, respectively; whereas Shr did not efficiently lose its heme in incubation with apoHtsA under the identical conditions. These results suggest that Shr directly transfers its heme to Shp. In addition, the rates of heme transfer from human hemoglobin to apoShp are close to those of simple ferric heme dissociation from hemoglobin, suggesting that methemoglobin does not directly transfer its heme to apoShp.</p> <p>Conclusion</p> <p>We have demonstrated that recombinant Shr can acquire heme from <it>E. coli </it>hemoproteins in vivo and appears to directly transfer its heme to Shp and that Shp appears not to directly acquire heme from human methemoglobin. These results suggest the possibility that Shr is a source of heme for Shp and that the Shr-to-Shp heme transfer is a step of the heme acquisition process in <it>S. pyogenes</it>. Further characterization of the Shr/Shp/HtsA system would advance our understanding of the mechanism of heme acquisition in <it>S. pyogenes</it>.</p

    Identification and characterization of the heme-binding proteins SeShp and SeHtsA of Streptococcus equi subspecies equi

    Get PDF
    BACKGROUND: Heme is a preferred iron source of bacterial pathogens. Streptococcus equi subspecies equi is a bacterial pathogen that causes strangles in horses. Whether S. equi has a heme acquisition transporter is unknown. RESULTS: An S. equi genome database was blasted with the heme binding proteins Shp and HtsA of Streptococcus pyogenes, and found that S. equi has the homologue of Shp (designated SeShp) and HtsA (designated SeHtsA). Tag-free recombinant SeShp and SeHtsA and 6xHis-tagged SeHtsA (SeHtsA(His)) were prepared and characterized. Purified holoSeShp and holoSeHtsA bind Fe(II)-protoporphyrin IX (heme) and Fe(III)-protoporphyrin IX (hemin) in a 1:1 stoichiometry, respectively, and are designated hemoSeShp and hemiSeHtsA. HemiSeShp and hemiSeHtsA(His )can be reconstituted from apoSeShp and apoSeHtsA(His )and hemin. HemoSeShp is stable in air and can be oxidized to hemiSeShp by ferricyanide. HemiSeHtsA can be reduced into hemoSeHtsA, which autoxidizes readily. HemoSeShp rapidly transfers its heme to apoSeHtsA(His). In addition, hemoSeShp can also transfer its heme to apoHtsA, and hemoShp is able to donate heme to apoSeHtsA(His). CONCLUSION: The primary structures, optical properties, oxidative stability, and in vitro heme transfer reaction of SeShp and SeHtsA are very similar to those of S. pyogenes Shp and HtsA. The data suggest that the putative cell surface protein SeShp and lipoprotein SeHtsA are part of the machinery to acquire heme in S. equi. The results also imply that the structure, function, and functional mechanism of the heme acquisition machinery are conserved in S. equi and S. pyogenes

    ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome

    Get PDF
    BACKGROUND: The Streptococcus pyogenes or Group A Streptococcus (GAS) genome encodes three ABC transporters, namely, FtsABCD, MtsABC, and HtsABC, which share homology with iron transporters. MtsABC and HtsABC are believed to take up ferric (Fe(3+)) and manganese ions and heme, respectively, while the specificity of FtsABCD is unknown. RESULTS: Recombinant FtsB, the lipoprotein component of FtsABCD, was found to bind Fe(3+ )ferrichrome in a 1:1 stoichiometry. To investigate whether FtsABCD transports Fe(3+ )ferrichrome, GAS isogenic strains defective in lipoprotein gene ftsB and permease gene ftsC were generated, and the effects of the mutations on uptake of Fe(3+ )ferrichrome were examined using radioactive (55)Fe(3+ )ferrichrome. FtsB was produced in the wild-type strain but not in the ftsB mutant, confirming the ftsB inactivation. While wild-type GAS took up 3.6 × 10(4 )Fe(3+ )ferrichrome molecules per bacterium per min at room temperature, the ftsB and ftsC mutants did not have a detectable rate of Fe(3+ )ferrichrome uptake. The inactivation of ftsB or ftsC also decreased (55)Fe(3+ )ferrichrome uptake by >90% under growth conditions in the case of limited uptake time. Complementation of the ftsB mutant with a plasmid carrying the ftsB gene restored FtsB production and (55)Fe(3+ )ferrichrome association at higher levels compared with the parent strain. The inactivation of mtsA and htsA and Fe-restricted conditions enhanced the production of FtsB and Fe(3+ )ferrichrome uptake. CONCLUSION: The FtsB protein bound Fe(3+ )ferrichrome, and inactivation of ftsB or ftsC, but not htsA or mtsA, diminished Fe(3+ )ferrichrome uptake, indicating that FtsABCD, but not HtsABC and MtsABC, is the transporter that takes up Fe(3+ )ferrichrome in GAS. Fe acquisition systems are virulence factors in many bacterial pathogens and are attractive vaccine candidates. The elucidation of the FtsABCD specificity advances the understanding of Fe acquisition processes in GAS and may help evaluating the GAS Fe acquisition systems as vaccine candidates

    The Two-Component Regulatory System VicRK is Important to Virulence of Streptococcus equi Subspecies equi

    Get PDF
    This study aims at evaluating the importance of the two-component regulatory system VicRK to virulence of the horse pathogen Streptococcus equi subspecies equi and the potential of a vicK mutant as a live vaccine candidate using mouse infection models. The vicK gene was deleted by gene replacement. The ΔvicK mutant is attenuated in virulence in both subcutaneous and intranasal infections in mice. ΔvicK grows less slowly than the parent strain but retains the ability of S. equi to resist to phagocytosis by polymorphoneuclear leukocytes, suggesting that the vicK deletion causes growth defect. ΔvicK infection protects mice against reinfection with a wild-type S. equi strain. Intranasal ΔvicK infection induces production of anti-SeM mucosal IgA and systemic IgG. These results indicate that VicRK is important to S. equi growth and virulence and suggest that ΔvicK has the potential to be developed as a live S. equi vaccine

    Slipped-strand mispairing within a polycytidine tract in transcriptional regulator mga leads to M protein phase variation and Mga length polymorphism in Group A Streptococcus

    Get PDF
    The M protein, a major virulence factor of Group A Streptococcus (GAS), is regulated by the multigene regulator Mga. An unexplained phenomena frequently occurring with in vitro genetic manipulation or culturing of M1T1 GAS strains is the loss of M protein production. This study was aimed at elucidating the basis for the loss of M protein production. The majority of M protein-negative (M−) variants had one C deletion at a tract of 8 cytidines starting at base 1,571 of the M1 mga gene, which is designated as c.1571C[8]. The C deletion led to a c.1571C[7] mga variant that has an open reading frame shift and encodes a Mga-M protein fusion protein. Transformation with a plasmid containing wild-type mga restored the production of the M protein in the c.1571C[7] mga variant. Isolates producing M protein (M+) were recovered following growth of the c.1571C[7] M protein-negative variant subcutaneously in mice. The majority of the recovered isolates with reestablished M protein production had reverted back from c.1571C[7] to c.1571C[8] tract and some M+ isolates lost another C in the c.1571C[7] tract, leading to a c.1571C[6] variant that encodes a functional Mga with 13 extra amino acid residues at the C-terminus compared with wild-type Mga. The nonfunctional c.1571C[7] and functional c.1571C[6] variants are present in M1, M12, M14, and M23 strains in NCBI genome databases, and a G-to-A nonsense mutation at base 1,657 of M12 c.1574C[7] mga leads to a functional c.1574C[7]/1657A mga variant and is common in clinical M12 isolates. The numbers of the C repeats in this polycytidine tract and the polymorphism at base 1,657 lead to polymorphism in the size of Mga among clinical isolates. These findings demonstrate the slipped-strand mispairing within the c.1574C[8] tract of mga as a reversible switch controlling M protein production phase variation in multiple GAS common M types

    Direct Heme Transfer Reactions in the Group A Streptococcus Heme Acquisition Pathway

    Get PDF
    The heme acquisition machinery in Group A Streptococcus (GAS) consists of the surface proteins Shr and Shp and ATP-binding cassette transporter HtsABC. Shp cannot directly acquire heme from methemoglobin (metHb) but directly transfers its heme to HtsA. It has not been previously determined whether Shr directly relays heme from metHb to Shp. Thus, the complete pathway for heme acquisition from metHb by the GAS heme acquisition machinery has remained unclear. In this study, the metHb-to-Shr and Shr-to-Shp heme transfer reactions were characterized by spectroscopy, kinetics and protein-protein interaction analyses. Heme is efficiently transferred from the β and α subunits of metHb to Shr with rates that are 7 and 60 times greater than those of the passive heme release from metHb, indicating that Shr directly acquires heme from metHb. The rapid heme transfer from Shr to Shp involves an initial heme donor/acceptor complex and a spectrally and kinetically detectable transfer intermediate, implying that heme is directly channeled from Shr to Shp. The present results show that Shr speeds up heme transfer from metHb to Shp, whereas Shp speeds up heme transfer from Shr to HtsA. Furthermore, the findings demonstrate that Shr can interact with metHb and Shp but not HtsA. Taken together with our published results on the Shp/HtsA reaction, these findings establish a model of the heme acquisition pathway in GAS in which Shr directly extracts heme from metHb and Shp relays it from Shr to HtsA

    Group A Streptococcus Secreted Esterase Hydrolyzes Platelet-Activating Factor to Impede Neutrophil Recruitment and Facilitate Innate Immune Evasion

    Get PDF
    The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses

    Benfang Lei’s research on heme acquisition in Gram-positive pathogens and bacterial pathogenesis

    No full text
    Benfang Lei’s laboratory conducts research on pathogenesis of human pathogen Group A Streptococcus (GAS) and horse pathogen Streptococcus equi (S. equi). His current research focuses on heme acquisition in Gram-positive pathogens and molecular mechanism of GAS and S. equi pathogenesis. Heme is an important source of essential iron for bacterial pathogens. Benfang Lei and colleagues identified the first cell surface heme-binding protein in Gram-positive pathogens and the heme acquisition system in GAS, demonstrated direct heme transfer from one protein to another, demonstrated an experimental pathway of heme acquisition by the Staphylococcus aureus Isd system, elucidated the activated heme transfer mechanism, and obtained evidence for a chemical mechanism of direct axial ligand displacement during the Shp-to-HtsA heme transfer reaction. These findings have considerably contributed to the progress that has been made over recent years in understanding the heme acquisition process in Gram-positive pathogens. Pathogenesis of GAS is mediated by an abundance of extracellular proteins, and pathogenic role and functional mechanism are not known for many of these virulence factors. Lei laboratory identified a secreted protein of GAS as a CovRS-regulated virulence factor that is a protective antigen and is critical for GAS spreading in the skin and systemic dissemination. These studies may lead to development of novel strategies to prevent and treat GAS infections

    Heme Transfer from Streptococcal Cell Surface Protein Shp to HtsA of Transporter HtsABC

    No full text
    Human pathogen group A streptococcus (GAS) can take up heme from host heme-containing proteins as a source of iron. Little is known about the heme acquisition mechanism in GAS. We recently identified a streptococcal cell surface protein (designated Shp) and the lipoprotein component (designated HtsA) of an ATP-binding cassette (ABC) transporter made by GAS as heme-binding proteins. In an effort to delineate the molecular mechanism involved in heme acquisition by GAS, heme-free Shp (apo-Shp) and HtsA (apo-HtsA) were used to investigate heme transfer from heme-containing proteins (holo proteins) to the apo proteins. In addition, the interaction between holo-Shp and holo-HtsA was examined using native polyacrylamide gel electrophoresis. Heme was efficiently transferred from holo-Shp to apo-HtsA but not from holo-HtsA to apo-Shp. Apo-Shp acquired heme from human hemoglobin, and holo-Shp and holo-HtsA were able to form a complex, suggesting that Shp actively relays heme from hemoglobin to apo-HtsA. These findings demonstrate for the first time complex formation and directional heme transfer between a cell surface heme-binding protein and the lipoprotein of a heme-specific ABC transporter in gram-positive bacteria
    • …
    corecore