47 research outputs found

    Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics

    Full text link
    [EN] This paper analyses the performance of SampEn and one of its derivatives, Fuzzy Entropy (FuzzyEn), in the context of artifacted blood glucose time series classification. This is a difficult and practically unexplored framework, where the availability of more sensitive and reliable measures could be of great clinical impact. Although the advent of new blood glucose monitoring technologies may reduce the incidence of the problems stated above, incorrect device or sensor manipulation, patient adherence, sensor detachment, time constraints, adoption barriers or affordability can still result in relatively short and artifacted records, as the ones analyzed in this paper or in other similar works. This study is aimed at characterizing the changes induced by such artifacts, enabling the arrangement of countermeasures in advance when possible. Despite the presence of these disturbances, results demonstrate that SampEn and FuzzyEn are sufficiently robust to achieve a significant classification performance, using records obtained from patients with duodenal-jejunal exclusion. The classification results, in terms of area under the ROC of up to 0.9, with several tests yielding AUC values also greater than 0.8, and in terms of a leave-one-out average classification accuracy of 80%, confirm the potential of these measures in this context despite the presence of artifacts, with SampEn having slightly better performance than FuzzyEn.The Czech partners were supported by DROIKEM000023001 and RVOVFN64165. No funding was received to support this research work by the Spanish partners.Cuesta Frau, D.; Novák, D.; Burda, V.; Molina Picó, A.; Vargas-Rojo, B.; Mraz, M.; Kavalkova, P.... (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy. 20(11):1-18. https://doi.org/10.3390/e20110871S118201

    Influence of Duodenal-Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods

    Get PDF
    [EN] Diabetes is a disease of great and rising prevalence, with the obesity epidemic being a significant contributing risk factor. Duodenal¿jejunal bypass liner (DJBL) is a reversible implant that mimics the effects of more aggressive surgical procedures, such as gastric bypass, to induce weight loss. We hypothesized that DJBL also influences the glucose dynamics in type II diabetes, based on the induced changes already demonstrated in other physiological characteristics and parameters. In order to assess the validity of this assumption, we conducted a quantitative analysis based on several nonlinear algorithms (Lempel¿Ziv Complexity, Sample Entropy, Permutation Entropy, and modified Permutation Entropy), well suited to the characterization of biomedical time series. We applied them to glucose records drawn from two extreme cases available of DJBL implantation: before and after 10 months. The results confirmed the hypothesis and an accuracy of 86.4% was achieved with modified Permutation Entropy. Other metrics also yielded significant classification accuracy results, all above 70%, provided a suitable parameter configuration was chosen. With the Leave¿One¿Out method, the results were very similar, between 72% and 82% classification accuracy. There was also a decrease in entropy of glycaemia records during the time interval studied. These findings provide a solid foundation to assess how glucose metabolism may be influenced by DJBL implantation and opens a new line of research in this field.The Czech clinical partners were supported by DRO IKEM 000023001 and RVO VFN 64165. The Czech technical partners were supported by Research Centre for Informatics grant numbers CZ.02.1.01/0.0/16 - 019/0000765 and SGS16/231/OHK3/3T/13-Support of interactive approaches to biomedical data acquisition and processing. No funding was received to support this research work by the Spanish and British partnersCuesta Frau, D.; Novák, D.; Burda, V.; Abasolo, D.; Adjei, T.; Varela, M.; Vargas, B.... (2019). Influence of Duodenal-Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods. Complexity. 2019. https://doi.org/10.1155/2019/6070518S2019Kassirer, J. P., & Angell, M. (1998). Losing Weight — An Ill-Fated New Year’s Resolution. New England Journal of Medicine, 338(1), 52-54. doi:10.1056/nejm199801013380109Van Gaal, L., & Dirinck, E. (2016). Pharmacological Approaches in the Treatment and Maintenance of Weight Loss. Diabetes Care, 39(Supplement 2), S260-S267. doi:10.2337/dcs15-3016De Jonge, C., Rensen, S. S., Verdam, F. J., Vincent, R. P., Bloom, S. R., Buurman, W. A., … Greve, J. W. M. (2015). Impact of Duodenal-Jejunal Exclusion on Satiety Hormones. Obesity Surgery, 26(3), 672-678. doi:10.1007/s11695-015-1889-yMuñoz, R., Dominguez, A., Muñoz, F., Muñoz, C., Slako, M., Turiel, D., … Escalona, A. (2013). Baseline glycated hemoglobin levels are associated with duodenal-jejunal bypass liner-induced weight loss in obese patients. Surgical Endoscopy, 28(4), 1056-1062. doi:10.1007/s00464-013-3283-yOgata, H., Tokuyama, K., Nagasaka, S., Ando, A., Kusaka, I., Sato, N., … Yamamoto, Y. (2007). Long-range Correlated Glucose Fluctuations in Diabetes. Methods of Information in Medicine, 46(02), 222-226. doi:10.1055/s-0038-1625411Rodríguez de Castro, C., Vigil, L., Vargas, B., García Delgado, E., García Carretero, R., Ruiz-Galiana, J., & Varela, M. (2016). Glucose time series complexity as a predictor of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 33(2), e2831. doi:10.1002/dmrr.2831DeFronzo, R. A. (2004). Pathogenesis of type 2 diabetes mellitus. Medical Clinics of North America, 88(4), 787-835. doi:10.1016/j.mcna.2004.04.013Zhang, X.-S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering, 48(12), 1424-1433. doi:10.1109/10.966601Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102Bian, C., Qin, C., Ma, Q. D. Y., & Shen, Q. (2012). Modified permutation-entropy analysis of heartbeat dynamics. Physical Review E, 85(2). doi:10.1103/physreve.85.021906Zhao, L., Wei, S., Zhang, C., Zhang, Y., Jiang, X., Liu, F., & Liu, C. (2015). Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects. Entropy, 17(12), 6270-6288. doi:10.3390/e17096270Weinstein, R. L., Schwartz, S. L., Brazg, R. L., Bugler, J. R., Peyser, T. A., & McGarraugh, G. V. (2007). Accuracy of the 5-Day FreeStyle Navigator Continuous Glucose Monitoring System: Comparison with frequent laboratory reference measurements. Diabetes Care, 30(5), 1125-1130. doi:10.2337/dc06-1602Weber, C., & Schnell, O. (2009). The Assessment of Glycemic Variability and Its Impact on Diabetes-Related Complications: An Overview. Diabetes Technology & Therapeutics, 11(10), 623-633. doi:10.1089/dia.2009.0043Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Jordán-Núñez, J., Vargas, B., González, P., & Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy, 20(11), 853. doi:10.3390/e20110853Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value rr for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870Crenier, L., Lytrivi, M., Van Dalem, A., Keymeulen, B., & Corvilain, B. (2016). Glucose Complexity Estimates Insulin Resistance in Either Nondiabetic Individuals or in Type 1 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101(4), 1490-1497. doi:10.1210/jc.2015-4035Cuesta, D., Varela, M., Miró, P., Galdós, P., Abásolo, D., Hornero, R., & Aboy, M. (2007). Predicting survival in critical patients by use of body temperature regularity measurement based on approximate entropy. Medical & Biological Engineering & Computing, 45(7), 671-678. doi:10.1007/s11517-007-0200-3Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.02291

    Comparison of Inflammatory Response to Transgastric and Transcolonic NOTES

    Get PDF
    Aims. The aim of our study was to determine the physiologic impact of NOTES and to compare the transgastric and transcolonic approaches. Methods. Thirty pigs were randomized to transgastric, transcolonic, or laparoscopic peritoneoscopy. Blood was drawn and analyzed for C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1β, IL-6, WBCs, and platelets. Results. Endoscopic closure with an OTSC was successful in all 20 animals. The postoperative course was uneventful in all animals. CRP values rose on day 1 in all animals and slowly declined to baseline levels on day 14 with no differences between the groups (P>0.05, NS). The levels of TNF-α were significantly increased in the transcolonic group (P<0.01); however this difference was already present prior to the procedure and remained unchanged. No differences were observed in IL1-β and IL-6 values. There was a temporary rise of WBC on day 1 and of platelets on day 7 in all groups (P>0.05, NS). Conclusions. Transgastric, transcolonic, and laparoscopic peritoneoscopy resulted in similar changes in systemic inflammatory markers. Our findings do not support the assumption that NOTES is less invasive than laparoscopy

    Rozhovor Britských listů 267. Režim, který jsme tu měli po roce 1989, právě skončil [Britské listy Interview 267. The regime which we have had in the Czech Republic since 1989, has just ended]

    No full text
    Jan Čulík discusses the economic, social and political impact of the coronavirus pandemic on the Czech Republic with the Ostrava-based international businessman Marek Beneš, Chief Executive of Hedviga Group. The interview was broadcast on the Czech cable TV station Regionalnitelevize.cz from Friday 27th March 2020

    Rozhovor Britských listů 267. Režim, který jsme tu měli po roce 1989, právě skončil [Britské listy Interview 267. The regime which we have had in the Czech Republic since 1989, has just ended]

    No full text
    Jan Čulík discusses the economic, social and political impact of the coronavirus pandemic on the Czech Republic with the Ostrava-based international businessman Marek Beneš, Chief Executive of Hedviga Group. The interview was broadcast on the Czech cable TV station Regionalnitelevize.cz from Friday 27th March 2020
    corecore