3 research outputs found

    Space Shuttle 2 advanced space transportation system, volume 2

    Get PDF
    To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference

    Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary

    Get PDF
    An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences

    Space Shuttle Main Engine (SSME) Systems Operation Overview and Evolution

    No full text
    The Space Shuttle Main Engine (SSME) is a large thrust class, reusable, staged combustion cycle rocket engine employing liquid hydrogen and liquid oxygen propellants. A cluster of three SSMEs is used on every space shuttle mission to propel the space shuttle orbiter vehicle into low earth orbit. Development of the SSME began in the early 70's and the first flight of the space shuttle occurred in 1981. Today, the SSME has accrued over one million seconds of ground test and flight operational time, launching 129 space shuttle missions. The systems operation of the SSME was developed and evolved to support the specific requirements of the Space Shuttle Program (SSP). This paper provides a systems operation overview of the SSME, including: engine cycle, propellant flowpaths, and major components; control system; operations during pre-start, start, mainstage, and shutdown phases; launch commit criteria (LCCs) and operational redlines. Furthermore, this paper will discuss how changes to the SSME over its history have impacted systems operations
    corecore