25 research outputs found

    Bias correction factors for near-Earth asteroids

    Get PDF
    Knowledge of the population size and physical characteristics (albedo, size, and rotation rate) of near-Earth asteroids (NEA's) is biased by observational selection effects which are functions of the population's intrinsic properties and the size of the telescope, detector sensitivity, and search strategy used. The NEA population is modeled in terms of orbital and physical elements: a, e, i, omega, Omega, M, albedo, and diameter, and an asteroid search program is simulated using actual telescope pointings of right ascension, declination, date, and time. The position of each object in the model population is calculated at the date and time of each telescope pointing. The program tests to see if that object is within the field of view (FOV = 8.75 degrees) of the telescope and above the limiting magnitude (V = +1.65) of the film. The effect of the starting population on the outcome of the simulation's discoveries is compared to the actual discoveries in order to define a most probable starting population

    A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition

    Get PDF
    The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni–FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni–FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni–FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections

    Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration

    No full text
    Within 5 million years after formation of calcium aluminium rich inclusions (CAI), high temperature anhydrous phases were transformed to hydrous phyllosilicates, mostly serpentines, which dominate the matrices of the most primitive carbonaceous chondrites. CMs are the largest group of meteorites to provide samples of this material. To understand the nature of the availability, and role of H2O in the early solar system – as well as the settings of aqueous alteration – defining CM petrogenesis is critical. By Position Sensitive Detector X-ray Diffraction (PSD-XRD), we determine the modal abundance of crystalline phases present in volumes >1% for a suite of CMs – extending Part 1 of this work that dealt only with CM2 falls (Howard et al., 2009) to now include CM2 and CM1 finds. CM2 samples contain 13–31% Fe,Mg silicates (olivine + pyroxene) and from 67% to 82% total phyllosilicate (mean 75% ± 1.3 2σ). CM1 samples contain 6–10% olivine + pyroxene and 86–88% total phyllosilicate. Magnetite (0.6–5.2%), sulphide (0.6–3.9%), calcite (0–1.9%) and gypsum (0–0.8%) are minor phases across all samples. Since phyllosilicate forms from hydration of anhydrous Fe,Mg silicates (olivine + pyroxene), the ratio of total phyllosilicate to total anhydrous Fe,Mg silicate defines the degree of hydration and the following sequence results (in order of increasing hydration): QUE 97990 < Y 791198 < Murchison < Murray < Mighei < ALHA 81002 < Nogoya ≤ Cold Bokkeveld ≤ Essebi < QUE 93005 < ALH 83100 < MET 01070 < SCO 06043. High activities of Al (mostly from reactive mesostasis) and Si help to explain the composition and structure of CM serpentines that are distinct from terrestrial standards. Our data allows inference as to CM mineralogy at the point of accretion and challenges the conceptual validity of progressive alteration sequences. Modal mineralogy also provides new insights into CM petrogenesis and hints at a component of aqueous alteration occurring in the nebula, in addition to on the CM parent body(ies)

    Palladium-silver chronology of IAB iron meteorites

    No full text
    The extinct 107Pd–107Ag decay system (half-life 6.5 Ma)is a useful chronometer to constrain thethermal evolution of the IAB parent body.To this end, Pd/Ag concentrations and the Ag isotopecompositions of metals separated from 6 different IAB iron meteorites were determined. The samplesshow epsilon 107Ag variations between +0.1 and +15.8 with 108Pd/109Ag ratios between 38 and 200.The datacan be divided into two groups based on their petrology, each defining an isochron:a graphite andtroilite rich inclusion bearing group (A),with the IAB meteorites Toluca, Odessa and Canyon Diablo anda more silicate rich group (B), which includes Campo Del Cielo, Caddo County and Goose Lake. Usingthe initial abundance of 107Pd derived from carbonaceous chondrites, the corresponding age for thegroup (A) is18.7(±3.6/5.0) Ma after the start of the solar system and 14.9 (±2.5/4.9) Ma forthe group (B). This suggests that the last thermal event to reach high enough temperatures to meltmetal on the IAB parent body occurred within the first 15 Ma of our solar system

    Characterization Of Mason Gully (H5): The Second Recovered Fall From The Desert Fireball Network

    No full text
    Mason Gully, the second meteorite recovered using the Desert Fireball Network (DFN), is characterized using petrography, mineralogy, oxygen isotopes, bulk chemistry, and physical properties. Geochemical data are consistent with its classification as an H5 ordinary chondrite. Several properties distinguish it from most other H chondrites. Its 10.7% porosity is predominantly macroscopic, present as intergranular void spaces rather than microscopic cracks. Modal mineralogy (determined via PS-XRD, element mapping via energy dispersive spectroscopy [EDS], and X-ray tomography [for sulfide, metal, and porosity volume fractions]) consistently gives an unusually low olivine/orthopyroxene ratio (0.67-0.76 for Mason Gully versus ~1.3 for typical H5 ordinary chondrites). Widespread silicate darkening is observed. In addition, it contains a bright green crystalline object at the surface of the recovered stone (diameter ≈ 1.5 mm), which has a tridymite core with minor α-quartz and a rim of both low- and high-Ca pyroxene. The mineralogy allows the calculation of the temperatures and f(O2) characterizing thermal metamorphism on the parent body using both the two-pyroxene and the olivine-chromite geo-oxybarometers. These indicate that MG experienced a peak metamorphic temperature of ~900 °C and had a similar f(O2) to Kernouvé (H6) that was buffered by the reaction between olivine, metal, and pyroxene. There is no evidence for shock, consistent with the observed porosity structure. Thus, while Mason Gully has some unique properties, its geochemistry indicates a similar thermal evolution to other H chondrites. The presence of tridymite, while rare, is seen in other OCs and likely exogenous; however, the green object itself may result from metamorphism

    The dissipation of the solar nebula constrained by impacts and core cooling in planetesimals

    No full text
    Rapid cooling of planetesimal cores has been inferred for several iron meteorite parent bodies on the basis of metallographic cooling rates, and linked to the loss of their insulating mantles during impacts. However, the timing of these disruptive events is poorly constrained. Here, we used the short-lived 107Pd–107Ag decay system to date rapid core cooling by determining Pd–Ag ages for iron meteorites. We show that closure times for the iron meteorites equate to cooling in the time frame ~7.8–11.7 Myr after calcium–aluminium-rich inclusion formation, and that they indicate that an energetic inner Solar System persisted at this time. This probably results from the dissipation of gas in the protoplanetary disk, after which the damping effect of gas drag ceases. An early giant planet instability between 5 and 14 Myr after calcium–aluminium-rich inclusion formation could have reinforced this effect. This correlates well with the timing of impacts recorded by the Pd–Ag system for iron meteorites.ISSN:2397-336

    The Meteoritical Bulletin, No. 96

    No full text
    The Meteoritical Bulletin No. 96 contains a total of 1590 newly approved meteorite names with their relevant data. These include 12 from specific locations within Africa, 76 from northwest Africa, 9 from the Americas, 13 from Asia, 1 from Australia, 2 from Europe, 950 from Antarctica recovered by the Chinese Antarctic Research Expedition (CHINARE), and 527 from the American Antarctic program (ANSMET). Among these meteorites are 4 falls, Almahata Sitta (Sudan), Sulagiri (India), Ash Creek (United States), and Maribo (Denmark). Almahata Sitta is an anomalous ureilite and is debris from asteroid 2008 TC3 and Maribo is a CM2 chondrite. Other highlights include a lunar meteorite, a CM1 chondrite, and an anomalous IVA iron
    corecore