21 research outputs found

    Metastability, negative specific heat and weak mixing in classical long-range many-rotator system

    Full text link
    We perform a molecular dynamical study of the isolated d=1d=1 classical Hamiltonian H=1/2i=1NLi2+ij1cos(θiθj)rijα;(α0){\cal H} = {1/2} \sum_{i=1}^N L_i^2 + \sum_{i \ne j} \frac{1-cos(\theta_i-\theta_j)}{r_{ij}^\alpha} ;(\alpha \ge 0), known to exhibit a second order phase transition, being disordered for uU/NN~uc(α,d)u \equiv U/N{\tilde N} \ge u_c(\alpha,d) and ordered otherwise (UU\equiv total energy and N~N1α/dα/d1α/d{\tilde N} \equiv \frac{N^{1-\alpha/d}-\alpha/d}{1-\alpha/d}). We focus on the nonextensive case α/d1\alpha/d \le 1 and observe that, for u<ucu<u_c, a basin of attraction exists for the initial conditions for which the system quickly relaxes onto a longstanding metastable state (whose duration presumably diverges with NN like N~{\tilde N}) which eventually crosses over to the microcanonical Boltzmann-Gibbs stable state. The temperature associated with the (scaled) average kinetic energy per particle is lower in the metastable state than in the stable one. It is exhibited for the first time that the appropriately scaled maximal Lyapunov exponent λu<ucmax(metastable)Nκmetastable;(N)\lambda_{u<u_c}^{max}(metastable) \propto N^{-\kappa_{metastable}} ;(N \to \infty), where, for all values of α/d\alpha/d, κmetastable\kappa_{metastable} numerically coincides with {\it one third} of its value for u>ucu>u_c, hence decreases from 1/9 to zero when α/d\alpha/d increases from zero to unity, remaining zero thereafter. This new and simple {\it connection between anomalies above and below the critical point} reinforces the nonextensive universality scenario.Comment: 9 pages and 4 PS figure

    15N NMR Shifts of Eumelanin Building Blocks in Water: A Combined Quantum Mechanics/Statistical Mechanics Approach

    No full text
    Theoretical results for the magnetic shielding of protonated and unprotonated nitrogens of eumelanin building blocks including monomers, dimers, and tetramers in gas phase and water are presented. The magnetic property in water was determined by carrying out Monte Carlo statistical mechanics sampling combined with quantum mechanics calculations based on the gauge-including atomic orbitals approach. The results show that the environment polarization can have a marked effect on nitrogen magnetic shieldings, especially for the unprotonated nitrogens. Large contrasts of the oligomerization effect on magnetic shielding show a clear distinction between eumelanin building blocks in solution, which could be detected in nuclear magnetic resonance experiments. Calculations for a &pi;-stacked structure defined by the dimer of a tetrameric building block indicate that unprotonated N atoms are significantly deshielded upon &pi; stacking, whereas protonated N atoms are slightly shielded. The results stress the interest of NMR experiments for a better understanding of the eumelanin complex structure

    Ab Initio Approach to the Structure, Vibrational Properties, and Electron Binding Energies of H<sub>2</sub>S∙∙∙SO<sub>2</sub>

    No full text
    The present study employs high-level ab initio calculations to investigate the structure, vibrational frequencies, and electronic properties of H2S∙∙∙SO2. The analysis of vibrational frequencies reveals an intramolecular vibrational energy transfer phenomenon, where energy from the stretching modes of H2S is transferred to the ν1s mode of SO2. At the CCSD(T)/aug-cc-pVQZ level, the interaction energy between H2S and SO2 is predicted to be 2.78 kcal/mol. Electron propagator theory calculations yield a HOMO–LUMO gap of 8.24 eV for H2S∙∙∙SO2. Furthermore, by utilizing ab initio results for the adiabatic ionization energy and electron affinity, the electrophilicity of H2S∙∙∙SO2 is estimated to be 2.01 eV. This value is similar to the electrophilicity of SO2, suggesting comparable reactivity and chemical behavior. The non-covalent interaction (NCI) analysis of the H2S∙∙∙SO2 complex emphasizes the significant contribution of non-covalent van der Waals interactions in its energetic stabilization

    Filipin orientation revealed by linear dichroism. Implication for a model of action.

    No full text
    The organization of the polyene antibiotic filipin in membranes containing cholesterol is a controversial matter of debate. Two contradictory models exist, one suggesting a parallel and the other perpendicular organization of filipin with respect to the plane of the membrane. UV-vis linear dichroism, ATR-FTIR, and fluorescence anisotropy decay techniques were combined to study the orientation of filipin in model systems of membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) with and without cholesterol. Filipin's orientation is determined by the presence/absence of cholesterol when it is inserted in gel crystalline phase model membranes. When cholesterol (33%) is present in DPPC bilayers, filipin stands perpendicular to the membrane surface as expected in "pore-forming" models. At variance, absence of cholesterol leaves filipin in an essentially random organization in the lipidic matrix. In liquid crystalline phase bilayers (POPC) filipin's orientation is perpendicular to the membrane surface even in absence of cholesterol. Thus filipin's activity/organization depends not only on cholesterol presence but also in the lipid phase domain it is inserted in. These findings were combined with spectroscopy and microscopy data in the literature, solving controversial matters of debate.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Dipole polarizability and Rayleigh light scattering by the hydrated electron

    No full text
    Assuming the existence of a confined state of the electron in bulk water the polarizability of the hydrated electron is analyzed. Statistically uncorrelated supermolecular structures composed of seven water molecules (first solvation shell) with an extra electron were extracted from classical Monte Carlo simulation and used in quantum mechanical second-order Moller-Plesset calculations. It is found that the bound excess electron contributes with 274 a.u. to the total dipole polarizability of 345 a.u. for (H(2)O)(7)(-). From the calculated polarizabilities the Rayleigh elastic light scattering properties are inferred and found to considerably enhance activity and light depolarization. (C) 2009 Elsevier B.V. All rights reserved.CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CAPES/PROCADCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP (Brazil)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para a Ciência e a Tecnologia de Portugal (FCT)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Brazil-Portugal CAPES/FCTFAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore