18 research outputs found

    Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    Get PDF
    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.11Ysciescopu

    Tuning vivaldi: Achieving increased accuracy and stability

    No full text
    Abstract. Network Coordinates are a basic building block for most peer-to-peer applications nowadays. They optimize the peer selection process by allowing the nodes to preferably attach to peers to whom they then experience a low round trip time. Albeit there has been substantial research effort in this topic over the last years, the optimization of the various network coordinate algorithms has not been pursued systematically yet. Analyzing the well-known Vivaldi algorithm and its proposed optimizations with several sets of extensive Internet traffic traces, we found that in face of current Internet data most of the parameters that have been recommended in the original papers are a magnitude too high. Based on this insight, we recommend modified parameters that improve the algorithms' performance significantly

    IgorFs: A Distributed P2P File System

    No full text
    IgorFs is a distributed, decentralized peer-to-peer (P2P) file system that is completely transparent to the user. It is built on top of the Igor peer-to-peer overlay network, which is similar to Chord, but provides additional features like ser-vice orientation or proximity neighbor and route selection. IgorFs offers an efficient means to publish data files that are subject to frequent but minor modifications. In our demon-stration we show two use cases for IgorFs: the first example is (static) software-distribution and the second example is (dynamic) file distribution. 1 Igor The Internet Grid Overlay Routing network “Igor ” is a structured P2P overlay network that provides a key based routing service similar to Chord [7]. Unlike a distribute

    Detection of Plastic Granules and Their Mixtures

    No full text
    Chemically pure plastic granulate is used as the starting material in the production of plastic parts. Extrusion machines rely on purity, otherwise resources are lost, and waste is produced. To avoid losses, the machines need to analyze the raw material. Spectroscopy in the visible and near-infrared range and machine learning can be used as analyzers. We present an approach using two spectrometers with a spectral range of 400–1700 nm and a fusion model comprising classification, regression, and validation to detect 25 materials and proportions of their binary mixtures. one dimensional convolutional neural network is used for classification and partial least squares regression for the estimation of proportions. The classification is validated by reconstructing the sample spectrum using the component spectra in linear least squares fitting. To save time and effort, the fusion model is trained on semi-empirical spectral data. The component spectra are acquired empirically and the binary mixture spectra are computed as linear combinations. The fusion model achieves very a high accuracy on visible and near-infrared spectral data. Even in a smaller spectral range from 400–1100 nm, the accuracy is high. The visible and near-infrared spectroscopy and the presented fusion model can be used as a concept for building an analyzer. Inexpensive silicon sensor-based spectrometers can be used

    Exploiting Smart Meter Water Consumption Measurements for Human Activity Event Recognition

    No full text
    Human activity event recognition (HAER) within a residence is a topic of significant interest in the field of ambient assisted living (AAL). Commonly, various sensors are installed within a residence to enable the monitoring of people. This work presents a new approach for HAER within a residence by (re-)using measurements from commercial smart water meters. Our approach is based on the assumption that changes in water flow within a residence, specifically the transition from no flow to flow above a certain threshold, indicate human activity. Using a separate, labeled evaluation data set from three households that was collected under controlled/laboratory-like conditions, we assess the performance of our HAER method. Our results showed that the approach has a high precision (0.86) and recall (1.00). Within this work, we further recorded a new open data set of water consumption data in 17 German households with a median sample rate of 0.083¯ Hz to demonstrate that water flow data are sufficient to detect activity events within a regular daily routine. Overall, this article demonstrates that smart water meter data can be effectively used for HAER within a residence

    Generation and Optimization of Spectral Cluster Maps to Enable Data Fusion of CaSSIS and CRISM Datasets

    No full text
    Four-band color imaging of the Martian surface using the Color and Stereo Surface Imaging System (CaSSIS) onboard the European Space Agency’s ExoMars Trace Gas Orbiter exhibits a high color diversity in specific regions. Not only is the correlation of color diversity maps with local morphological properties desirable, but mineralogical interpretation of the observations is also of great interest. The relatively high spatial resolution of CaSSIS data mitigates its low spectral resolution. In this paper, we combine the broad-band imaging of the surface of Mars, acquired by CaSSIS with hyperspectral data from the Compact Reconnaissance Imaging Spectrometer (CRISM) onboard NASA’s Mars Reconnaissance Orbiter to achieve a fusion of both datasets. We achieve this using dimensionality reduction and data clustering of the high dimensional datasets from CRISM. In the presented research, CRISM data from the Coprates Chasma region of Mars are tested with different machine learning methods and compared for robustness. With the help of a suitable metric, the best method is selected and, in a further step, an optimal cluster number is determined. To validate the methods, the so-called “summary products” derived from the hyperspectral data are used to correlate each cluster with its mineralogical properties. We restrict the analysis to the visible range in order to match the generated clusters to the CaSSIS band information in the range of 436–1100 nm. In the machine learning community, the so-called UMAP method for dimensionality reduction has recently gained attention because of its speed compared to the already established t-SNE. The results of this analysis also show that this method in combination with the simple K-Means outperforms comparable methods in its efficiency and speed. The cluster size obtained is between three and six clusters. Correlating the spectral cluster maps with the given summary products from CRISM shows that four bands, and especially the NIR bands and VIS albedo, are sufficient to discriminate most of these clusters. This demonstrates that features in the four-band CaSSIS images can provide robust mineralogical information, despite the limited spectral information using semi-automatic processing

    Generation and Optimization of Spectral Cluster Maps to Enable Data Fusion of CaSSIS and CRISM Datasets

    No full text
    Four-band color imaging of the Martian surface using the Color and Stereo Surface Imaging System (CaSSIS) onboard the European Space Agency’s ExoMars Trace Gas Orbiter exhibits a high color diversity in specific regions. Not only is the correlation of color diversity maps with local morphological properties desirable, but mineralogical interpretation of the observations is also of great interest. The relatively high spatial resolution of CaSSIS data mitigates its low spectral resolution. In this paper, we combine the broad-band imaging of the surface of Mars, acquired by CaSSIS with hyperspectral data from the Compact Reconnaissance Imaging Spectrometer (CRISM) onboard NASA’s Mars Reconnaissance Orbiter to achieve a fusion of both datasets. We achieve this using dimensionality reduction and data clustering of the high dimensional datasets from CRISM. In the presented research, CRISM data from the Coprates Chasma region of Mars are tested with different machine learning methods and compared for robustness. With the help of a suitable metric, the best method is selected and, in a further step, an optimal cluster number is determined. To validate the methods, the so-called “summary products” derived from the hyperspectral data are used to correlate each cluster with its mineralogical properties. We restrict the analysis to the visible range in order to match the generated clusters to the CaSSIS band information in the range of 436–1100 nm. In the machine learning community, the so-called UMAP method for dimensionality reduction has recently gained attention because of its speed compared to the already established t-SNE. The results of this analysis also show that this method in combination with the simple K-Means outperforms comparable methods in its efficiency and speed. The cluster size obtained is between three and six clusters. Correlating the spectral cluster maps with the given summary products from CRISM shows that four bands, and especially the NIR bands and VIS albedo, are sufficient to discriminate most of these clusters. This demonstrates that features in the four-band CaSSIS images can provide robust mineralogical information, despite the limited spectral information using semi-automatic processing

    Spectral Clustering of CRISM Datasets in Jezero Crater Using UMAP and k-Means

    Get PDF
    In this paper, we expand upon our previous research on unsupervised learning algorithms to map the spectral parameters of the Martian surface. Previously, we focused on the VIS-NIR range of hyperspectral data from the CRISM imaging spectrometer instrument onboard NASA’s Mars Reconnaissance Orbiter to relate to other correspondent imager data sources. In this study, we generate spectral cluster maps on a selected CRISM datacube in a NIR range of 1050–2550 nm. This range is suitable for identifying most dominate mineralogy formed in ancient wet environment such as phyllosilicates, pyroxene and smectites. In the machine learning community, the UMAP method for dimensionality reduction has recently gained attention because of its computing efficiency and speed. We apply this algorithm in combination with k-Means to data from Jezero Crater. Such studies of Jezero Crater are of priority to support the planning of the current NASA’s Perseversance rover mission. We compare our results with other methodologies based on a suitable metric and can identify an optimal cluster size of six for the selected datacube. Our proposed approach outperforms comparable methods in efficiency and speed. To show the geological relevance of the different clusters, the so-called “summary products” derived from the hyperspectral data are used to correlate each cluster with its mineralogical properties. We show that clustered regions relate to different mineralogical compositions (e.g., carbonates and pyroxene). Finally the generated spectral cluster map shows a qualitatively strong resemblance with a given manually compositional expert map. As a conclusion, the presented method can be implemented for automated region-based analysis to extend our understanding of Martian geological history

    Spectral Clustering of CRISM Datasets in Jezero Crater Using UMAP and k-Means

    No full text
    In this paper, we expand upon our previous research on unsupervised learning algorithms to map the spectral parameters of the Martian surface. Previously, we focused on the VIS-NIR range of hyperspectral data from the CRISM imaging spectrometer instrument onboard NASA’s Mars Reconnaissance Orbiter to relate to other correspondent imager data sources. In this study, we generate spectral cluster maps on a selected CRISM datacube in a NIR range of 1050–2550 nm. This range is suitable for identifying most dominate mineralogy formed in ancient wet environment such as phyllosilicates, pyroxene and smectites. In the machine learning community, the UMAP method for dimensionality reduction has recently gained attention because of its computing efficiency and speed. We apply this algorithm in combination with k-Means to data from Jezero Crater. Such studies of Jezero Crater are of priority to support the planning of the current NASA’s Perseversance rover mission. We compare our results with other methodologies based on a suitable metric and can identify an optimal cluster size of six for the selected datacube. Our proposed approach outperforms comparable methods in efficiency and speed. To show the geological relevance of the different clusters, the so-called “summary products” derived from the hyperspectral data are used to correlate each cluster with its mineralogical properties. We show that clustered regions relate to different mineralogical compositions (e.g., carbonates and pyroxene). Finally the generated spectral cluster map shows a qualitatively strong resemblance with a given manually compositional expert map. As a conclusion, the presented method can be implemented for automated region-based analysis to extend our understanding of Martian geological history
    corecore