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Abstract: In this paper, we expand upon our previous research on unsupervised learning algorithms
to map the spectral parameters of the Martian surface. Previously, we focused on the VIS-NIR
range of hyperspectral data from the CRISM imaging spectrometer instrument onboard NASA’s
Mars Reconnaissance Orbiter to relate to other correspondent imager data sources. In this study,
we generate spectral cluster maps on a selected CRISM datacube in a NIR range of 1050–2550 nm.
This range is suitable for identifying most dominate mineralogy formed in ancient wet environment
such as phyllosilicates, pyroxene and smectites. In the machine learning community, the UMAP
method for dimensionality reduction has recently gained attention because of its computing efficiency
and speed. We apply this algorithm in combination with k-Means to data from Jezero Crater. Such
studies of Jezero Crater are of priority to support the planning of the current NASA’s Perseversance
rover mission. We compare our results with other methodologies based on a suitable metric and can
identify an optimal cluster size of six for the selected datacube. Our proposed approach outperforms
comparable methods in efficiency and speed. To show the geological relevance of the different
clusters, the so-called “summary products” derived from the hyperspectral data are used to correlate
each cluster with its mineralogical properties. We show that clustered regions relate to different
mineralogical compositions (e.g., carbonates and pyroxene). Finally the generated spectral cluster
map shows a qualitatively strong resemblance with a given manually compositional expert map.
As a conclusion, the presented method can be implemented for automated region-based analysis to
extend our understanding of Martian geological history.

Keywords: Mars; CRISM; Jezero; spectral cluster map; UMAP

1. Introduction

A prominent instrument to acquire spectral data from orbit to determine mineralogical
properties of specific areas is the CRISM [1] hyperspectral imaging spectrometer onboard
NASA’s Mars Reconnaissance Orbiter (MRO). In particular, the area of Nili Fossea including
Jezero Crater has been extensively covered. The data indicate mineralogical structures
formed in ancient wet environments and therefore supports the 2020 Perserverance rover
mission goals.

The planetary geologic mapping process itself relies on basic geometric and strati-
graphic principles, historically limited by the availability of image and topographic data.
Such process has been greatly aided in the last two decades by the availability of digital
data [2] and geospatial qualitative and quantitative applications [3].

The availability of compositional data in the last decades allowed the inclusion of
different kind of methods, varying from heuristical methods to statistical approaches [4–7].
Our work here relies on unsupervised classification, which is an important standard
procedure in geospatial analysis [8]. Such unsupervised techniques are established methods
in data analysis of hyperspectral data, particularly in planetary data analysis where there is
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insufficient calibration in-field data. Clusters of similar spectral signatures can be generated
with these methods which in turn can be used to derive the composition of the surface.
Such an approach has a direct impact on geologic mapping activities, such as the analysis
of Oxia Planum by Fawdon et al. or Zambon et al. on Mercury [9,10]. On the other hand,
many of these methods are learning procedures that are sensitive to initial conditions,
data preprocessing, and other influences such as atmospheric effects. Also the results
depend on the model, the choice of parameters and the number of clusters. Therefore, it is
critical to develop a robust methodology. The combination of band information and spatial
distributions is formed into a data structure, in this paper called Spectral Cluster Maps
(SCMs). High-dimensional data are transferred to a low latent variable representation by
directly applying advanced methods on the full spectrum itself and these clusters can be
related to underlying geochemical composition [11].

It is essential to find suitable unsupervised dimensionality reduction techniques to
produce accurate SCMs before applying various clustering algorithms on the feature space.
The principal component analysis (PCA) [12] is the most commonly used technique applied
to spectral data (e.g., [13,14]) and therefore we use this here to benchmark against more
elaborate algorithms. In recent studies of Machine Learning Networks, approaches such
as t-SNE [15] have achieved promising results. Distinct grouping has been obtained by
focussing on more local structures and mapping the feature space into a low-dimensional
representation. Further studies in this direction include, amongst others, [16,17].

In this category, the self-organizing maps technique, developed by Kohonen [18],
has already been proposed for generating spectral databases. Specifically for Mars, a
recently proposed algorithm for spectral application is the autoencoder technique which is
mentioned by Gao et al. [11].

The application of the UMAP technique to spectral data is relatively rare at present.
Groups tackling this issue include Picollo et al. [19] and Wander et al. [20]. Publications
using UMAP are more abundant in the biology research field [21,22]. In a previous work
Fernandes et al. [23] made a detailed comparison of these techniques on datasets of Capri
Chasmata within the VISNIR range. They reached promising results by applying UMAP as
the dimensionality reduction technique and showed superior performance of this technique.
Taking into account their findings, this study intends to examine the properties of UMAP in
the relevant NIR range. Due to its non-linear processing the use of UMAP in combination
with unsupervised clustering can increase the ability to identify clusters in certain cases [24].

The rest of this paper is structured as follows: Section 2 describes the data and the
data pipeline used. The examined UMAP reduction technique applied in this study is
also presented. In Section 3, the obtained results are illustrated and discussed intensely.
Section 4 proceeds with a new proposed method for quantitative geological mapping of
the generated spectral cluster maps based on the summary browse products. The paper
finishes with a brief discussion and conclusion (Section 6).

2. Materials and Methods

This section is devoted to the UMAP algorithm and data pipeline considered in this
study. The data and their origin are also described.

2.1. Data and Location

CRISM is a high spectral resolution visible and infrared mapping spectrometer cur-
rently in orbit around Mars onboard NASA’s Mars Reconnaissance Orbiter (MRO) [1]. For
this analysis we selected data as described in Appendix B. The CRISM MTRDR products
are sophisticated empirical and statistically corrected sets to remove spikes, rectify for
imaging geometry and gimbal motion, and remove atmospheric contamination to obtain
approximate surface reflectance [11].

It provides 2D spatially resolved spectra over a wavelength range of 362 nm to 3920 nm
at 6.55 nm/channel. The spatial resolution is typically around 18 m/px. Pelkey et al. [25]
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and Viviano et al. [26] generated a feature set of “image products” from CRISM spectra,
which are strongly related to the geochemical composition of the Martian surface.

The area under investigation exhibits significant color diversity at visible wavelengths
and is of major interest in studies of the history of liquid water on Mars. Jezero (e.g., [27–29])
is a 45 km wide crater in the vicinity of Nili Fossae, that experienced fluvio-lacustrine
activity during the Noachian-Hesperian (e.g., [30–32]).

While not all channel systems are associated to clear fluvial deposits on Mars [33],
the use of hyperspectral data can help identifying water-altered material both in well-
characterised settings [34], as well as after eventual erosion and transport outside of the
original basin and context.

The crater contains well-preserved and well-exposed delta deposits at its western
edge, and the area displays a rich and varied surface mineralogy [35–40].

The entire Jezero area, especially the delta at its western border, has been well observed
by several experiments, with a series of overlapping MRO CRISM cubes (Figure 1).

Recent detailed orbital geologic mapping of the landing site area is available [32,41],
as well as geomorphologic algorithm-aided mapping [42]. Jezero Crater was selected as
landing site for the Perserverance mission in 2020 [43].

Figure 1. Location map of used cubes in the present work. (A) HRSC MC-13 quadrant color
basemap [44]: of Nili Fossae and surrounding areas, including Jezero, in the highlighted subset.
(B) Jezero Crater CTX mosaic [45,46] with indicated CRISM observation HRL000040FF, highlighed in
white of overlapping CRISM MTRDR data covering its delta. (C) IR enhanced color composite (FAL)
using as RGB R2529, R1506, R1080 [26] for CRISM observation HRL000040FF.

For reason of comparison we include datasets from the Capri Chasma area which were
selected in our previous publication and summarize briefly the results in the Appendix A.

2.2. Dimensionality Reduction

In 2018, McInnes and Healy [47] presented the Uniform Manifold Approximation
and Projection (UMAP) as a method for dimensionality reduction and data visualization.
The idea and computation resembles the one for t-SNE [48] to a large extent. A concise
overview of the algorithm is given by Allaoui et al. [49]. UMAP aims to represent the
dataset X in a fuzzy topological structure. In order to build such a structure, the data
points are represented in a high-dimensional weighted graph. Each edge weight depicts
the probability that two points are connected and is defined by

pi|j = exp(−
d(xi, xj)− ρi

σi
), (1)

where d(xi, xj) depicts the distance between the i-th and j-th data points, ρ is the distance
between i-th data points and its first nearest neighbor and σi is the scale parameter.

Subsequently, a lower-dimensional representation Y has to be determined which
properly reproduces the relations of the data points in the high-dimensional graph. The
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projections, yi and yj, have to be mapped in the way that they correctly rebuild the similari-
ties between the high-dimensional data points implying that the conditional probabilities
pi|j and qij are equal. To model these low-dimensional similarities, UMAP uses a distribu-
tion similar to the Student t-distribution

qij = (1 + a(yi − yj)
2b)
−1

. (2)

In the default UMAP implementation a ≈ 1.93 and b ≈ 0.79 are used but setting a = 1
and b = 1 results in the Student t-distribution applied in t-SNE [47].

For optimization of the embedding Y, the low-dimensional representation UMAP
uses binary cross-entropy as a cost function. It is also necessary to specify the number of
nearest neighbors. As outlined by Vermeulen et al. [50], this parameter controls how UMAP
handles local versus global structure in the data. A small value affects concentration on
very local structure, while a larger value forces UMAP to search for larger neighborhoods.

The UMAP algorithm has achieved promising results by processing MTRDR CRISM
datasets, as shown in Fernandes et al. [23]. They report superior performance of UMAP
in comparison to other feature extraction techniques based on multiple scores. How-
ever, it is important to note that their work is limited to the visible and near-infrared
wavelength range.

Nevertheless, we follow their parameter setup and reduce the original spectral di-
mension to two-dimensional data. Furthermore, we set the number of nearest neighbors
to 100.

2.3. Data Pipeline

The intention of this paper is to establish a new method for spectral clustering of
CRISM datasets. To include already published approaches in this research field and to
exploit this existing knowledge we follow the approach of Gao et al. [11] and implement
their data pipeline. This pipeline is an easy to understand procedure and consists of three
main parts: preprocessing, feature extraction and clustering algorithm. Another reason for
this choice is to create an equivalent basis of comparison for our new approach.

The preprocessing is an iterative process of several steps including removing non-
physical outliers and a ”per pixel” normalization. We select the same wavelength under
investigation (1050 to 2550 nm) and apply also a mask to cut out the region of interest. The
spectra are divided by the mean of spectra from a nearby bland area over many pixels
in order to reduce systematic errors and minimize physical biases [1,51,52]. For a more
detailed description, we refer to Gao et al. [11].

We extend the implementation by adding a new method for dimensionality reduction.
As outlined in Section 2.2, we follow the approach of Fernandes et al. [23] and pick up the
UMAP algorithm.

The autoencoder model by Gao et al. [11] is unchanged. The only modification is the
insertion of the size of the latent feature space, determined by HySime [53], to a minimum
value of 5.

For benchmarking the proposed techniques, we continue to use the standard statistical
principal component analysis (PCA) and the t-distributed Stochastic Neighbor Embedding
(t-SNE) in our data pipeline. The number of extracted principal components is also fixed
at 5 as this number of components explains about 95% of the variance in the data and the
increase of ratio of explained variance is very small by increasing components.

Finally, the clustering is performed by k-Means and GMM. Contrary to Gao et al. [11]
we decide not to operate with a predefined number of clusters, but to explore a certain
parameter space and then specify the most adequate number of clusters based on some
appropriate metrics. Previous work, [11,23] suggests that a good a priori estimator is
probably located between 5 and 20 clusters.

Overall, multiple different methods for generating SCMs were introduced and imple-
mented, but we focus on the evaluation of the UMAP+k-Means approach.
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2.4. Quantitative Metrics

To assess the clustering performance in a quantitative manner, we computed multiple
unsupervised cluster-separation metrics for evaluation. To start with, the Calinski-Harabasz
index (CH) [54] for a set of data E with nE pixels and split into k clusters is defined as the
ratio of the dispersion between and within clusters.

CH =
tr(Bk)

tr(Wk)
× nE − k

k− 1
, (3)

where

Wk =
k

∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T , (4)

Bk =
n

∑
q=1

nq(cq − cE)(cq − cE)
T , (5)

with Cq denoting the set of points in cluster q, cq the center of cluster q, cE the center of
E and nq the number of points in cluster q. The measure indicates a higher score when
clusters are dense and well separated.

The Davies-Bouldin index (DB) [55] is based on the average similarity between each
cluster i and its most similar one j and is given by

DB =
1
k

k

∑
i=1

max
j

Rij, (6)

where
Rij =

si + sj

dij
(7)

is the cluster similarity measure. si is the cluster diameter and dij is the distance between
cluster centroids i and j. A lower score refers to a higher cluster validity.

As a final measure, the span of the Silhouette Coefficient (SC) is limited between−1 for
incorrect clustering and +1 for highly dense clustering whereby scores around zero indicate
overlapping clusters. Thus, a significant advantage of this metric is that it allows direct
conclusions about the efficiency and goodness of the clustering algorithm. The SC [56] for
a single sample can be written as

s =
b− a

max(a, b)
. (8)

The measure is based on the mean distance a between a point and all other points in
the same group and the mean distance b between the point and all samples in the next
nearest cluster. The value of SC for a generated SCM is depicted by the average of the
coefficient for each pixel.

3. Results

The presentation of results is split into two different segments. First we will report
the metrics for the examined methods in order to identify the best quantitative fit for the
cluster number and perform a quantitative evaluation. On the basis of these findings, we
can operate with the generated SCM of the highest level of validity on the subsequent
qualitative and visual analysis and have not to deal with assumptions and an arbitrary
chosen number of clusters.

3.1. Quantitative Analysis

We start by calculating the metrics, introduced in Section 2.4, over the defined range
of clusters. The CH and DB coefficient are fast to compute, thus they will be shown as
a base line. Furthermore, these scores are used to filter the best method. As outlined by
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Milligan and Cooper [57], the CH score is a powerful criterion for evaluating the validity
of clustering.

By inspecting the computed values we face the same issue as reported by Fernandes
et al. [23] and observe also strong fluctuation in the scores. Therefore, it is difficult to draw
an evidence-based conclusion about method and clusters. To treat this problem we proceed
in a similar way and compute the mean over the full range of investigated clusters for each
method and score. We list the results for the HRL000040FF dataset in Table 1.

Table 1. Mean of the Calinski-Harabasz and Davies-Bouldin criterion over a range of 5 to 20 clusters
for the HRL000040FF dataset, split by method. The best score for each coefficient is in bold.

Clustering Metrics

Methods Calinski-Harabasz Davies-Bouldin

UMAP + k-Means 114,928 0.8179
UMAP + GMM 109,469 0.8349

Autoencoder + k-Means 25,649 1.2435
Autoencoder + GMM 12,648 2.5199

PCA + k-Means 53,478 1.0643
PCA + GMM 19,594 2.6050

t-SNE + k-Means 78,578 0.8072
t-SNE + GMM 75,248 0.8120

According to the CH score both UMAP approaches outperform the benchmark meth-
ods and UMAP in combination with the k-Means clustering has the highest score. The PCA
and autoencoder models exhibit the lowest CH value. In the case of DB, there is a similar
ranking. The models using t-SNE as dimensionalirty reduction perform the best but the
differences among UMAP and t-SNE are marginal. It should be emphasized again that
UMAP and t-SNE are based on a related concept to cut down multidimensional data [47,48].

In order not to confine the results to a particular CRISM dataset, we include sev-
eral MTRDR products in our analysis additionally. The values of both metrics for the
FRT0000c564, FRT000b776 and FRT0001c71b dataset can be found in Appendix A.1. Apart
from a few exceptions, there is also a consistent pattern between the CH and DB metric
when establishing rank statistics of the individual scores for each dataset where a higher
rank invokes denser clusters. To summarize, the UMAP+k-Means approach is able to
exceed the benchmarks.

These results correspond with previous studies [23]. Fernandes et al. [23] also used
the Capri Chasma set FRT0001c71b, so we confirm their findings for a different wave-
length range. In summary, we provide another evidence of UMAP’s capabilities as a
dimensionality reduction technique in dealing with spectral data.

So far, we examined a predefined range of possible number of clusters without know-
ing the ground truth labels of the pixels. In the next step, we apply the SC due to its
interpretability for selecting the best convenient total number of labels. Within the scope
of this examination, we restrict ourselves to the UMAP+k-Means method because of its
best performance.

Hence, we plot the SC index against number of clusters for the Jezero Crater dataset.
Apart from a little sharp bend at seven clusters Figure 2 shows an almost continuously
declining graph by an increasing number of clusters. Thus, there is a strong evidence that
the true number of clusters is at the lower end of the range under investigation.
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Figure 2. Silhouette Score of UMAP+k-Means as a function of the number of clusters for HRL000040FF
dataset.

In general, the values vary from below 0.36 (19 clusters) to about 0.40 (5 and 6 clusters)
resulting in a moderate clustering ability for the model within this scope.

To ensure an accurate decision as possible, we illustrate the Silhouette plot for the two
cluster values with the highest score in Figure 3. The Silhouette plot depicts the SC index
for each single pixel grouped by class label. Moreover the dashed vertical line corresponds
to the average score across all pixels. We conclude that for both numbers of classes all
clusters are located above the mean score. To make a choice we have to extend the analysis.

At first, it is clearly visible that 5 clusters in Figure 3a have a more uniform thickness
whereas the small class breaks this structure at 6 clusters. In spite of this fact we tend
rather to 6 clusters for the following reasons: By observing the fluctuations between all
clusters within one cluster environment we note a slightly higher variation for 5 clusters in
comparison to 6 ones. High variation usually indicates a sub-optimal number of clusters.

Furthermore, we detect in Figure 3b several pixels with a relative negative score around
0.10. By adding one extra class this “hitch” can be rectified and the high negative scores are
eliminated. Finally, we reduce the fluctuations between the clusters. Consequently, we fix
this number and proceed with a UMAP+k-Means generated SCM of 6 classes.

(a) 5 clusters (b) 6 clusters

Figure 3. Silhouette Plot UMAP+k-Means for 5 and 6 clusters and the HRL000040FF set.

3.2. Qualitative Analysis

To perform qualitative evaluation we resort to the partial expert classification map
used by Gao et al. [11]. This is a 6-class partially classified image of the Jezero Crater
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whereas five classes are directly mapped with some mineralogy and one class exists as
unclassified area.

At first sight, it is evident that the expert map (Figure 4a) and the UMAP SCM
(Figure 4b) exhibit strong similarity in the form and characteristics of the located clusters.
The shapes of the individual clusters of both images resemble each other closely.

In order to ensure a consistent assessment, we start evaluation with the three most
dominant classes: olivine, Fe/Mg smectite and carbonate; colored yellow, blue and green
in expert map.

(a) Expert map (b) UMAP+k-Means

Figure 4. On the left side, the expert map used by Gao et al. [11] is presented. Each class is associated
with a different color. In total, 6 classes are clustered as follows: olivine, yellow; pyroxene, orange;
carbonate, green; Fe/Mg smectite, blue; silica, magenta and unclassified area, gray. On the right side,
the UMAP+k-Means generated spectral cluster map with 6 identified clusters is illustrated. The same
detail, as captured by expert map (a), is shown.

The presented SCM distinctly identifies all three regions and all areas of these classes
are correctly clustered. One single difference is that, in the upper left half of expert map,
the carbonate class is omnipresent while the UMAP created SCM indicates a mix of the
Fe/Mg smectite and carbonate classes.

The pyroxene, orange color in Figure 4a, is likewise reliably detected by the proposed
method. Besides the pyroxene deposit below the Fe/Mg smectite and partly inside this class
area, it seems that the algorithm assigns some unclassified areas to pyroxene mineralogy
as well.

To continue with the unlabeled fraction of the expert map, we discovered a new class,
including a large part of this territory. On the left side of the SCM in an area not covered by
the expert map, the applied approach provides another novel group (cf. Figure 5). In order
to label these areas we introduce a quantitative UMAP-based approach for automated class
to mineralogy mapping in Section 4.

Figure 5. Spectral cluster map by UMAP-k-Means and 6 clusters for the complete clustered area of
Jezero Crater.
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To complete the visual analysis we also inspect the spectra of the generated clusters
since the remaining expert silica class is not seen in the produced cluster map. The correla-
tion with the mineralogical findings is supported by calculating mean spectra per cluster.

In Figure 6, we can observe the broad discriminative character of these spectra. For the
dispersion of each band of the computed mean spectra for each cluster we observe values
of about 5 percent. A broad absorption from 1050 nm to 1800 nm (olivine) for class 5 and a
broad absorption from 1300 nm to 2300 nm (pyroxene) can be identified in case of class 4.
We can see especially the key absorption of carbonates at 2500 nm (class 1). For a detailed
comparison we refer to Gao et al. [11].

The benefit of using k-Means clustering is that instead of mean spectra, which are
mixtures of different mineralogical fingerprints also the k-Means cluster center spectra,
can be selected and analyzed, which in this case does not fundamentally differ from the
mean spectra.

Figure 6. Mean spectra per cluster as representative fingerprint. Key unique absorptions at 1900 nm
(water in minerals), 2300 nm and 2500 nm (carbonate) and 2300 nm (Fe/Mg smectite) are marked
with vertical dotted lines.

4. Quantitative Geological Mapping

After the visual assessment of the UMAP+k-Means spectral cluster map, we demon-
strate the geological relevance of the different classes in a quantitative way. In addition, the
goal is to classify mineralogically the so far unmapped area (cf. Figures 4a and 5).

To connect the clusters with geo-morphological properties we use the summary prod-
ucts of the HRL000040FF dataset. Summary products can be applied to draw conclusions
about the mineralogy and related surface types [58].

We define X as the summary products matrix with p pixels and N products. For
consistency purposes we exclude several products in our investigation, mainly because the
wavelength to which they respond are not within the examined range. In total, we have
29 products.

Considering a particular cluster c, where c ∈ C and C denotes the set of clusters,
we select all pixels from X corresponding to c. Then, we pick up the first component of
the UMAP feature embedding space and also mask out all unwanted pixels which are
not clustered to c. Subsequent, we fit a Random Forest Regressor model M where the
summary products are the input samples and the extracted latent variables of the first
UMAP component are the target values y. Each forest consists of 100 trees.



Remote Sens. 2023, 15, 939 10 of 16

After the estimator is fit, we compute permutation importance to filter the most
important features G in the model. The permutation feature importance is defined to be the
decline in a model score when a single feature value is randomly shuffled [59]. The idea is
to establish a link between class and mineralogy based on the extracted summary products.
The summarized methodology is given in Algorithm 1.

Algorithm 1: Quantitative geological mapping
Data: X Summary browse products matrix

y First UMAP-component of feature embedding space
SCM Spectral cluster map with C clusters

Result: G Most important features per class c
for c ∈ C do

X̃← mask(X, SCM, c);
// select all pixels from X corresponding to c

ỹ← mask(y, SCM, c);
// select all pixels from y corresponding to c

M← f it_RandomForestRegressor(X̃, ỹ);
// fit model

P← PermutationImportance(M, X̃, ỹ);
// compute permutation importance using fitted estimator

G← FilterProducts(P, n);
// extract n most important summary products

end

We repeated this procedure for each class c and report the results of our investigation
for n = 3 in Table 2. Results with fewer products are also included.

Table 2. Quantitative geological mapping of the six identified regions for the Jezero Crater
(HRL000040FF). The products conforming to the expert map (cf. Figure 4a) are in bold, accord-
ing to Viviano et al. [26].

Cluster Selected Products Geology Expert Map

1 HCPINDEX2, CINDEX2, BD1750_2, Carbonates Carbonates
2 BD1750_2 , HCPINDEX2 Gypsum, Alunite unclassified
3 CINDEX2, RPEAK1 Fe, Fe-Carbonate Fe
4 D2300 , HCPINDEX2 Pyroxene, Silicates Pyroxene
5 HCPINDEX2, RPEAK1 Fe-mineralogy (suggest Olivine) Olivine
6 BD1750_2, OLINDEX3 , HCPINDEX2 Gypsum, Alunite, Olivine unclassified

The fitted Random Forest estimators have a R2 score of about 0.94 or higher for every c.
So a high predictive power of the individual models is observable. The geology information
indicated with the selected products is based on Viviano et al. [26]. All further remarks on
mapping between summary products and the mineralogy refer to this work.

For all labeled classes (apart form the silica area) in expert map, the algorithm is capable
of properly linking the UMAP feature embedding space to mineralogical properties. The
summary browse product HCPINDEX2 is an indicator for silicate minerals and contributes
significantly to the model for each cluster.

The MAF browse product (cf. Figure 7) combining OLINDEX3, LCPINDEX2 and
HCPINDEX2 in its RGB channels visualizes the mafic mineralogy and highlights the
presence of olivine and Fe-phyllosilicate in red.
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Figure 7. The MAF browse product of the MTRDR product HRL000040FF. This image browse
product shows information related to mafic mineralogy and denotes olivine and Fe-phyllosilicate in
red color [26].

Of particular interest are the non by expert classified regions in Figure 4a and the new
clustered area on the left-side of the UMAP+k-Means SCM (cf. Figure 5). We illustrate
these two classes in Figure 8. Besides the presence of HCPINDEX2, we detected the
areas seen in summary product BD1750_2 and the OLINDEX3 in cluster 6. According to
Viviano et al. [26] this finding indicate occurrences of aluminum clays and carbonates.This
is in agreement with Horgan et al. [38], who visualized a mixture of aluminium clays
and carbonates in distinct regions for Jezero crater. In general, the identified clusters
characterize compositional mixtures and represent the mineralogy diversity given in [38].

(a) Cluster 2 (b) Cluster 6

Figure 8. The two novel classes identified by the UMAP+k-Means and pictured as an overlay of the
true image of Jezero Crater. Left: cluster 2 embraces mainly the unclassified area of expert map (cf.
Figure 4a). Right: cluster 6 indicates a new mineralogy class.

5. Discussion

Based on the results of all metrics (CH and DB) the UMAP combined with the k-Means
cluster procedure shows the best scores (cf. Table 1 and Appendix A.1). Consequently, this
method was selected and was optimized with respect to the cluster size. The same metrics
can be used and figure shows that a cluster size of 6 is proposed for the individual dataset
investigated in this study.

Our analysis shows that summary browse products can be linked to each cluster in a
quantitative manner. It confirms the composition given in the expert map and found by
Gao et al. [11] supporting regions of carbonates, smectites and hydrated minerals. More-
over, for the 2 newly assigned clusters we could identify for cluster 1 and for cluster
6 mixtures of Al-clays and carbonates.
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6. Conclusions

In this paper, a simple fast method is proposed to derive spectral clusters from hyper-
spectral data in the near-infrared wavelength range. The analyses show that the UMAP
algorithm in combination with the k-Means clustering method, on the one hand, provides
results quickly and, based on common cluster metrics, yields comparable or even better
results than other proposed methods.

The evaluation of the presented cluster metrics suggests an optimal cluster number
of six. The optimized cluster map for Jezero Crater shows a strong similarity to the given
expert map.

Another important finding is that the method could identify two more regions, which
for other methods were hard to distinguish. Spectral signatures of each cluster could clearly
be related to the mineralogy (e.g., pyroxene, carbonates and Fe) found in Jezero. As the
algorithm by its design executes its calculations very fast, it is useful for the evaluation and
combination of large hyperspectral datasets in planetary applications.

It must be emphasized that the results can depend strongly on the data selection,
the preprocessing and the signal-to-noise ratio. Thus, this procedure should rather be
implemented in an iterative process with semi-manual approaches. Therefore, further
iterative optimization of the procedure regarding robustness is required.

Research is still needed to quantify how the use of UMAP can address common
challenges of unsupervised clustering, such as sensitivity to initial conditions, choice of
parameters and data preprocessing.

To test the algorithm, we are planning an expanded analysis of the entire Jezero Crater
area and to make it available to the broad community of different research groups.
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SC Silhouette Coefficient

SCM Spectral Cluster Map

t-SNE t-distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection
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Appendix A

Appendix A.1

Table A1. Mean of the Calinski-Harabasz and Davies-Bouldin criterion over a range of 5 to 20 clusters
for the FRT0000c564 dataset, split by method. The best score for each coefficient is in bold.

Clustering Metrics

Methods Calinski-Harabasz Davies-Bouldin

UMAP + k-Means 110,568 0.7939
UMAP + GMM 89,283 0.8535

Autoencoder + k-Means 28,345 1.2651
Autoencoder + GMM 14,133 2.0985

PCA + k-Means 40,415 1.2055
PCA + GMM 13,995 2.8828

t-SNE + k-Means 94,857 0.8092
t-SNE + GMM 88,134 0.8222

Table A2. Mean of the Calinski-Harabasz and Davies-Bouldin criterion over a range of 5 to 20 clusters
for the FRT0000b776 dataset, split by method. The best score for each coefficient is in bold.

Clustering Metrics

Methods Calinski-Harabasz Davies-Bouldin

UMAP + k-Means 216,545 0.7192
UMAP + GMM 196,229 0.7545

Autoencoder + k-Means 39,897 1.1298
Autoencoder + GMM 16,721 2.1699

PCA + k-Means 59,637 1.3214
PCA + GMM 21,027 4.3664

t-SNE + k-Means 152,121 0.8279
t-SNE + GMM 144,334 0.8501

Table A3. Mean of the Calinski-Harabasz and Davies-Bouldin criterion over a range of 5 to 20 clusters
for the FRT0001c71b dataset, split by method. The best score for each coefficient is in bold.

Clustering Metrics

Methods Calinski-Harabasz Davies-Bouldin

UMAP + k-Means 164,883 0.6932
UMAP + GMM 139,372 0.7362

Autoencoder + k-Means 31,184 1.0316
Autoencoder + GMM 17,879 1.7953

PCA + k-Means 56,562 0.9992
PCA + GMM 25,703 1.6261

t-SNE + k-Means 92,332 0.8048
t-SNE + GMM 86,278 0.8155

Appendix B. Citation of PDS Data Products

PDS3 data products cited in this paper as part of https://doi.org/10.17189/1519470
(accessed on 1 October 2022) have the following PDS3 DATA_SET_ID:PRODUCT_IDs:

https://doi.org/10.17189/1519470
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HRL000040FF

FRT0000c564

FRT0000b776

FRT0001c71b
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