2 research outputs found

    100 GHz Plasmonic Photodetector

    No full text
    Photodetectors compatible with CMOS technology have shown great potential in implementing active silicon photonics circuits, yet current technologies are facing fundamental bandwidth limitations. Here, we propose and experimentally demonstrate for the first time a plasmonic photodetector achieving simultaneously record-high bandwidth beyond 100 GHz, an internal quantum efficiency of 36% and low footprint. High-speed data reception at 72 Gbit/s is demonstrated. Such superior performance is attributed to the subwavelength confinement of the optical energy in a photoconductive based plasmonic-germanium waveguide detector that enables shortest drift paths for photogenerated carriers and a very small resistance-capacitance product. In addition, the combination of plasmonic structures with absorbing semiconductors enables efficient and highest-speed photodetection. The proposed scheme may pave the way for a cost-efficient CMOS compatible and low temperature fabricated photodetector solution for photodetection beyond 100 Gbit/s, with versatile applications in fields such as communications, microwave photonics, and THz technologies

    Atomic Scale Photodetection Enabled by a Memristive Junction

    No full text
    The optical control of atomic relocations in a metallic quantum point contact is of great interest because it addresses the fundamental limit of “CMOS scaling”. Here, by developing a platform for combined electronics and photonics on the atomic scale, we demonstrate an optically controlled electronic switch based on the relocation of atoms. It is shown through experiments and simulations how the interplay between electrical, optical, and light-induced thermal forces can reversibly relocate a few atoms and enable atomic photodetection with a digital electronic response, a high resistance extinction ratio (70 dB), and a low OFF-state current (10 pA) at room temperature. Additionally, the device introduced here displays an optically induced pinched hysteretic current (optical memristor). The photodetector has been tested in an experiment with real optical data at 0.5 Gbit/s, from which an eye diagram visualizing millions of detection cycles could be produced. This demonstrates the durability of the realized atomic scale devices and establishes them as alternatives to traditional photodetectors
    corecore