130 research outputs found

    Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system

    Get PDF
    It has long been recognized that the T-cell compartment has more CD4 helper than CD8 cytotoxic T cells, and this is most evident looking at T-cell development in the thymus. However, it remains unknown how thymocyte development so favors CD4 lineage development. To identify the basis of this asymmetry, we analyzed development of synchronized cohorts of thymocytes in vivo and estimated rates of thymocyte death and differentiation throughout development, inferring lineage-specific efficiencies of selection. Our analysis suggested that roughly equal numbers of cells of each lineage enter selection and found that, overall, a remarkable ∼75% of cells that start selection fail to complete the process. Importantly it revealed that class I-restricted thymocytes are specifically susceptible to apoptosis at the earliest stage of selection. The importance of differential apoptosis was confirmed by placing thymocytes under apoptotic stress, resulting in preferential death of class I-restricted thymocytes. Thus, asymmetric death during selection is the key determinant of the CD4:CD8 ratio in which T cells are generated by thymopoiesis

    Models of self-peptide sampling by developing T cells identify candidate mechanisms of thymic selection

    Get PDF
    Conventional and regulatory T cells develop in the thymus where they are exposed to samples of self-peptide MHC (pMHC) ligands. This probabilistic process selects for cells within a range of responsiveness that allows the detection of foreign antigen without excessive responses to self. Regulatory T cells are thought to lie at the higher end of the spectrum of acceptable self-reactivity and play a crucial role in the control of autoimmunity and tolerance to innocuous antigens. While many studies have elucidated key elements influencing lineage commitment, we still lack a full understanding of how thymocytes integrate signals obtained by sampling self-peptides to make fate decisions. To address this problem, we apply stochastic models of signal integration by T cells to data from a study quantifying the development of the two lineages using controllable levels of agonist peptide in the thymus. We find two models are able to explain the observations; one in which T cells continually re-assess fate decisions on the basis of multiple summed proximal signals from TCR-pMHC interactions; and another in which TCR sensitivity is modulated over time, such that contact with the same pMHC ligand may lead to divergent outcomes at different stages of development. Neither model requires that T and T are differentially susceptible to deletion or that the two lineages need qualitatively different signals for development, as have been proposed. We find additional support for the variable-sensitivity model, which is able to explain apparently paradoxical observations regarding the effect of partial and strong agonists on T and T development

    Clonally diverse T cell homeostasis is maintained by a common program of cell-cycle control

    Get PDF
    Lymphopenia induces T cells to undergo cell divisions as part of a homeostatic response mechanism. The clonal response to lymphopenia is extremely diverse, and it is unknown whether this heterogeneity represents distinct mechanisms of cell-cycle control or whether a common mechanism can account for the diversity. We addressed this question by combining in vivo and mathematical modeling of lymphopenia-induced proliferation (LIP) of two distinct T cell clonotypes. OT-I T cells undergo rapid LIP accompanied by differentiation that superficially resembles Ag-induced proliferation, whereas F5 T cells divide slowly and remain naive. Both F5 and OT-I LIP responses were most accurately described by a single stochastic division model where the rate of cell division was exponentially decreased with increasing cell numbers. The model successfully identified key biological parameters of the response and accurately predicted the homeostatic set point of each clone. Significantly, the model was successful in predicting interclonal competition between OT-I and F5 T cells, consistent with competition for the same resource(s) required for homeostatic proliferation. Our results show that diverse and heterogenous clonal T cell responses can be accounted for by a single common model of homeostasis

    Towards a unified model of naive T cell dynamics across the lifespan

    Get PDF
    Naive CD4 and CD8 T cells are cornerstones of adaptive immunity, but the dynamics of their establishment early in life and how their kinetics change as they mature following release from the thymus are poorly understood. Further, due to the diverse signals implicated in naive T cell survival, it has been a long-held and conceptually attractive view that they are sustained by active homeostatic control as thymic activity wanes. Here we employ multiple experimental systems to identify a unified model of naive CD4 and CD8 T cell population dynamics in mice, across their lifespan. We infer that both subsets divide rarely and progressively increase their survival capacity with cell age. Strikingly, this simple model is able to describe naive CD4 T cell dynamics throughout life. In contrast, we find that newly generated naive CD8 T cells are lost more rapidly during the first 3-4 weeks of life, likely due to increased recruitment into memory. We find no evidence for elevated division rates in neonates, or for feedback regulation of naive T cell numbers at any age. We show how confronting mathematical models with diverse datasets can reveal a quantitative and remarkably simple picture of naive T cell dynamics in mice from birth into old age

    Quantifying cellular dynamics in mice using a novel fluorescent division reporter system

    Get PDF
    The dynamics of cell populations are frequently studied in vivo using pulse-chase DNA labeling techniques. When combined with mathematical models, the kinetic of label uptake and loss within a population of interest then allows one to estimate rates of cell production and turnover through death or onward differentiation. Here we explore an alternative method of quantifying cellular dynamics, using a cell fate-mapping mouse model in which dividing cells can be induced to constitutively express a fluorescent protein, using a Ki67 reporter construct. We use a pulse-chase approach with this reporter mouse system to measure the lifespans and division rates of naive CD4 and CD8 T cells using a variety of modeling approaches, and show that they are all consistent with estimates derived from other published methods. However we propose that to obtain unbiased parameter estimates and full measures of their uncertainty one should simultaneously model the timecourses of the frequencies of labeled cells within both the population of interest and its precursor. We conclude that Ki67 reporter mice provide a promising system for modeling cellular dynamics

    IKK promotes naïve T cell survival by repressing RIPK1-dependent apoptosis and activating NF-κB

    Get PDF
    The inhibitor of κB kinase (IKK) complex regulates the activation of the nuclear factor κB (NF-κB) family of transcription factors. In addition, IKK represses extrinsic cell death pathways dependent on receptor-interacting serine/threonine-protein kinase 1 (RIPK1) by directly phosphorylating this kinase. Here, we showed that peripheral naïve T cells in mice required the continued expression of IKK1 and IKK2 for their survival; however, the loss of these cells was only partially prevented when extrinsic cell death pathways were blocked by either deleting Casp8 (which encodes the apoptosis-inducing caspase 8) or inhibiting the kinase activity of RIPK1. Inducible deletion of Rela (which encodes the NF-κB p65 subunit) in mature CD4+ T cells also resulted in loss of naïve CD4+ T cells and in reduced abundance of the interleukin-7 receptor (IL-7R) encoded by the NF-κB target Il7r, revealing an additional reliance upon NF-κB for the long-term survival of mature T cells. Together, these data indicate that the IKK-dependent survival of naïve CD4+ T cells depends on both repression of extrinsic cell death pathways and activation of an NF-κB-dependent survival program

    Quantifying cellular dynamics in mice using a novel fluorescent division reporter system

    Get PDF
    The dynamics of cell populations are frequently studied in vivo using pulse-chase DNA labeling techniques. When combined with mathematical models, the kinetic of label uptake and loss within a population of interest then allows one to estimate rates of cell production and turnover through death or onward differentiation. Here we explore an alternative method of quantifying cellular dynamics, using a cell fate-mapping mouse model in which dividing cells can be induced to constitutively express a fluorescent protein, using a Ki67 reporter construct. We use a pulse-chase approach with this reporter mouse system to measure the lifespans and division rates of naive CD4 and CD8 T cells using a variety of modeling approaches, and show that they are all consistent with estimates derived from other published methods. However we propose that to obtain unbiased parameter estimates and full measures of their uncertainty one should simultaneously model the timecourses of the frequencies of labeled cells within both the population of interest and its precursor. We conclude that Ki67 reporter mice provide a promising system for modeling cellular dynamics
    corecore