6 research outputs found

    Snowflake: A deep learning-based human leukocyte antigen matching algorithm considering allele-specific surface accessibility

    Get PDF
    Histocompatibility in solid-organ transplantation has a strong impact on long-term graft survival. Although recent advances in matching of both B-cell epitopes and T-cell epitopes have improved understanding of allorecognition, the immunogenic determinants are still not fully understood. We hypothesized that HLA solvent accessibility is allele-specific, thus supporting refinement of HLA B-cell epitope prediction. We developed a computational pipeline named Snowflake to calculate solvent accessibility of HLA Class I proteins for deposited HLA crystal structures, supplemented by constructed HLA structures through the AlphaFold protein folding predictor and peptide binding predictions of the APE-Gen docking framework. This dataset trained a four-layer long short-term memory bidirectional recurrent neural network, which in turn inferred solvent accessibility of all known HLA Class I proteins. We extracted 676 HLA Class-I experimental structures from the Protein Data Bank and supplemented it by 37 Class-I alleles for which structures were predicted. For each of the predicted structures, 10 known binding peptides as reported by the Immune Epitope DataBase were rendered into the binding groove. Although HLA Class I proteins predominantly are folded similarly, we found higher variation in root mean square difference of solvent accessibility between experimental structures of different HLAs compared to structures with identical amino acid sequence, suggesting HLA’s solvent accessible surface is protein specific. Hence, residues may be surface-accessible on e.g. HLA-A*02:01, but not on HLA-A*01:01. Mapping these data to antibody-verified epitopes as defined by the HLA Epitope Registry reveals patterns of (1) consistently accessible residues, (2) only subsets of an epitope’s residues being consistently accessible and (3) varying surface accessibility of residues of epitopes. Our data suggest B-cell epitope definitions can be refined by considering allele-specific solvent-accessibility, rather than aggregating HLA protein surface maps by HLA class or locus. To support studies on epitope analyses in organ transplantation, the calculation of donor-allele-specific solvent-accessible amino acid mismatches was implemented as a cloud-based web service

    T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation

    Get PDF
    CD4(+) T-helper cells play an important role in alloimmune reactions following transplantation by stimulating humoral as well as cellular responses, which might lead to failure of the allograft. CD4(+) memory T-helper cells from a previous immunizing event can potentially be reactivated by exposure to HLA mismatches that share T-cell epitopes with the initial immunizing HLA. Consequently, reactivity of CD4(+) memory T-helper cells toward T-cell epitopes that are shared between immunizing HLA and donor HLA could increase the risk of alloimmunity following transplantation, thus affecting transplant outcome. In this study, the amount of T-cell epitopes shared between immunizing and donor HLA was used as a surrogate marker to evaluate the effect of donor-reactive CD4(+) memory T-helper cells on the 10-year risk of death-censored kidney graft failure in 190 donor/recipient combinations using the PIRCHE-II algorithm. The T-cell epitopes of the initial theoretical immunizing HLA and the donor HLA were estimated and the number of shared PIRCHE-II epitopes was calculated. We show that the natural logarithm-transformed PIRCHE-II overlap score, or Shared T-cell EPitopes (STEP) score, significantly associates with the 10-year risk of death-censored kidney graft failure, suggesting that the presence of pre-transplant donor-reactive CD4(+) memory T-helper cells might be a strong indicator for the risk of graft failure following kidney transplantation

    Specific amino acid patterns define split specificities of HLA-B15 antigens enabling conversion from DNA-based typing to serological equivalents

    No full text
    The HLA-B15 typing by serological approaches defined the serological subgroups (or splits) B62, B63, B75, B76, B77 and B70 (B71 and B72). The scarcity of sera with specific anti-HLA antibodies makes the serological typing method difficult to discriminate a high variety of HLA antigens, especially between the B15 antigen subgroups. Advancements in DNA-based technologies have led to a switch from serological typing to high-resolution DNA typing methods. DNA sequencing techniques assign B15 specificity to all alleles in the HLA-B*15 allele group, without distinction of the serological split equivalents. However, the presence of antibodies in the patient defined as split B15 antigens urges the identification of HLA-B*15 allele subtypes of the donor, since the presence of donor-specific antibodies is an important contraindication for organ transplantation. Although the HLA dictionary comprises information regarding the serological subtypes of HLA alleles, there are currently 394 B15 antigens out of 516 in the IPD-IMGT/HLA database (3.38.0) without any assigned serological subtype. In this regard, we aimed to identify specific amino acid patterns for each B*15 serological split, in order to facilitate the assignment of B*15 alleles to serological equivalents after high-resolution molecular typing. As a result, serological specificities of 372/394 not yet assigned alleles could be predicted based on amino acid motifs. Furthermore, two new serological types were identified and added, B62-Bw4 and B71-Bw4

    Report from the extended HLA-DPA1 ~ promoter ~ HLA-DPB1 haplotype of the 18th international HLA and immunogenetics workshop

    No full text
    The primary goal of the HLA-DPA1 ~ promoter ~ HLA-DPB1 haplotype component of the 18th IHIWS was to characterise the extended haplotypes within the HLA-DP region and survey the extent of genetic diversity in this region across human populations. In this report, we analysed single-nucleotide polymorphisms (SNPs) in 255 subjects from 6 different cohorts. The results from the HLA-DP haplotype component have validated findings from the initial pilot study. SNPs in this region were inherited in strong linkage, particularly HLA-DPA1, SNP-linked promoter haplotypes and motifs in exon 2 of HLA-DPB1. We reported 17 SNP-linked haplotypes in the promoter region. Together with HLA-DPA1 and HLA-DPB1 alleles, they formed 74 distinct extended HLA-DP haplotypes in 438 sequences. We also observed the presence of region-specific alleles and promoter haplotypes. Our approach involved phasing extended SNPs including promoter SNPs, HLA-DPA1 and HLA-DPB1 alleles, in a 22 kb region, GRCh38/hg38 (chr6:33,064,111-33,086,679), followed by clustering of these SNPs as one extended haplotype. This hierarchical clustering revealed four major clades, suggesting that haplotypes within each clade may have diverged from a common ancestral haplotype and undergone similar evolutionary processes. The correlation between HLA-DPA1 and the promoter region raises questions about the role of HLA-DPA1 antigen in the heterodimer. This finding requires validation on a larger sample size specifically designed for anthropological analysis. Nevertheless, the results from this study highlight the clinical potential of selecting better-matched donors for patients awaiting haematopoietic stem cell transplants from genetically overlapping groups that share common ancestral haplotypes.Scopu

    Report from the extended HLA-DPA1 similar to promoter similar to HLA-DPB1 haplotype of the 18th international HLA and immunogenetics workshop

    No full text
    The primary goal of the HLA-DPA1 ~ promoter ~ HLA-DPB1 haplotype component of the 18th IHIWS was to characterise the extended haplotypes within the HLA-DP region and survey the extent of genetic diversity in this region across human populations. In this report, we analysed single-nucleotide polymorphisms (SNPs) in 255 subjects from 6 different cohorts. The results from the HLA-DP haplotype component have validated findings from the initial pilot study. SNPs in this region were inherited in strong linkage, particularly HLA-DPA1, SNP-linked promoter haplotypes and motifs in exon 2 of HLA-DPB1. We reported 17 SNP-linked haplotypes in the promoter region. Together with HLA-DPA1 and HLA-DPB1 alleles, they formed 74 distinct extended HLA-DP haplotypes in 438 sequences. We also observed the presence of region-specific alleles and promoter haplotypes. Our approach involved phasing extended SNPs including promoter SNPs, HLA-DPA1 and HLA-DPB1 alleles, in a 22 kb region, GRCh38/hg38 (chr6:33,064,111-33,086,679), followed by clustering of these SNPs as one extended haplotype. This hierarchical clustering revealed four major clades, suggesting that haplotypes within each clade may have diverged from a common ancestral haplotype and undergone similar evolutionary processes. The correlation between HLA-DPA1 and the promoter region raises questions about the role of HLA-DPA1 antigen in the heterodimer. This finding requires validation on a larger sample size specifically designed for anthropological analysis. Nevertheless, the results from this study highlight the clinical potential of selecting better-matched donors for patients awaiting haematopoietic stem cell transplants from genetically overlapping groups that share common ancestral haplotypes.Scopu
    corecore