4,588 research outputs found

    Astrometric observations of the faint satellites of Jupiter during the 1975 - 1976 opposition

    Get PDF
    The series of astrometric observations of the satellites of the trans-martian planets re-established at the McDonald Observatory in 1972 is continued. The positions deduced from photographic observations of the jovian system obtained during the 1975-76 opposition are presented together with the discovery positions of four asteroids found on these plates

    Entanglement of two qubits in a relativistic orbit

    Full text link
    The creation and destruction of entanglement between a pair of interacting two-level detectors accelerating about diametrically opposite points of a circular path is investigated. It is found that any non-zero acceleration has the effect of suppressing the vacuum entanglement and enhancing the acceleration radiation thereby reducing the entangling capacity of the detectors. Given that for large accelerations the acceleration radiation is the dominant effect, we investigate the evolution of a two detector system initially prepared in a Bell state using a perturbative mater equation and treating the vacuum fluctuations as an unobserved environment. A general function for the concurrence is obtained for stationary and symmetric worldlines in flatspace. The entanglement sudden death time is computed.Comment: v2: Some typo's fixed, figures compressed to smaller filesize and added some references

    NGC 4314. III. Inflowing Molecular Gas Feeding a Nuclear Ring of Star Formation

    Full text link
    NGC 4314 is an early-type barred galaxy containing a nuclear ring of recent star formation. We present CO(1-0) interferometer data of the bar and circumnuclear region with 2.3 x 2.2 arcsec spatial resolution and 13 km/s velocity resolution acquired at the Owens Valley Radio Observatory . These data reveal a clumpy circumnuclear ring of molecular gas. We also find a peak of CO inside the ring within 2 arcsec of the optical center that is not associated with massive star formation. We construct a rotation curve from these CO kinematic data and the mass model of Combes et al. (1992). Using this rotation curve, we have identified the location of orbital resonances in the galaxy. Assuming that the bar ends at corotation, the circumnuclear ring of star formation lies between two Inner Lindblad Resonances, while the nuclear stellar bar ends near the IILR. Deviations from circular motion are detected just beyond the CO and H-alpha ring, where the dust lanes along the leading edge of the bar intersect the nuclear ring. These non-circular motions along the minor axis correspond to radially inward streaming motions at speeds of 20 - 90 km/s and clearly show inflowing gas feeding an ILR ring. There are bright HII regions near the ends of this inflow region, perhaps indicating triggering of star formation by the inflow.Comment: 25 pages, uses aasms.sty. 7 Postscript figures, 12 JPEG figures. Figures may be retrieved from ftp://clyde.as.utexas.edu/pub/N4314COfigs.tar.g

    Dynamics of molecular nanomagnets in time-dependent external magnetic fields: Beyond the Landau-Zener-St\"{u}ckelberg model

    Full text link
    The time evolution of the magnetization of a magnetic molecular crystal is obtained in an external time-dependent magnetic field, with sweep rates in the kT/s range. We present the 'exact numerical' solution of the time dependent Schr\"{o}dinger equation, and show that the steps in the hysteresis curve can be described as a sequence of two-level transitions between adiabatic states. The multilevel nature of the problem causes the transition probabilities to deviate significantly from the predictions of the Landau-Zener-St\"{u}ckelberg model. These calculations allow the introduction of an efficient approximation method that accurately reproduces the exact results. When including phase relaxation by means of an appropriate master equation, we observe an interplay between coherent dynamics and decoherence. This decreases the size of the magnetization steps at the transitions, but does not modify qualitatively the physical picture obtained without relaxation.Comment: 8 pages, 7 figure

    Magnetoroton scattering by phonons in the fractional quantum Hall regime

    Full text link
    Motivated by recent phonon spectroscopy experiments in the fractional quantum Hall regime we consider processes in which thermally excited magnetoroton excitations are scattered by low energy phonons. We show that such scattering processes can never give rise to dissociation of magnetorotons into unbound charged quasiparticles as had been proposed previously. In addition we show that scattering of magnetorotons to longer wavelengths by phonon absorption is possible because of the shape of the magnetoroton dispersion curve and it is shown that there is a characteristic cross-over temperature above which the rate of energy transfer to the electron gas changes from an exponential (activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev

    Thermodynamics and Stability of Higher Dimensional Rotating (Kerr) AdS Black Holes

    Full text link
    We study the thermodynamic and gravitational stability of Kerr anti-de Sitter black holes in five and higher dimensions. We show, in the case of equal rotation parameters, ai=aa_i=a, that the Kerr-AdS background metrics become stable, both thermodynamically and gravitationally, when the rotation parameters aia_i take values comparable to the AdS curvature radius. In turn, a Kerr-AdS black hole can be in thermal equilibrium with the thermal radiation around it only when the rotation parameters become not significantly smaller than the AdS curvature radius. We also find with equal rotation parameters that a Kerr-AdS black hole is thermodynamically favored against the existence of a thermal AdS space, while the opposite behavior is observed in the case of a single non-zero rotation parameter. The five dimensional case is however different and also special in that there is no high temperature thermal AdS phase regardless of the choice of rotation parameters. We also verify that at fixed entropy, the temperature of a rotating black hole is always bounded above by that of a non-rotating black hole, in four and five dimensions, but not in six and more dimensions (especially, when the entropy approaches zero or the minimum of entropy does not correspond to the minimum of temperature). In this last context, the six dimensional case is marginal.Comment: 15 pages, 23 eps figures, RevTex

    Quantum rings with time dependent spin-orbit coupling: Rabi oscillations, spintronic Schrodinger-cat states, and conductance properties

    Full text link
    The strength of the (Rashba-type) spin-orbit coupling in mesoscopic semiconductor rings can be tuned with external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave packets exhibits a series of collapse and revival phenomena. Partial revivals -- that are typical in nonlinear systems -- are shown to correspond to superpositions of states localized at different spatial positions along the ring. These "spintronic Schrodinger-cat sates" appear periodically, and similarly to their counterparts in other physical systems, they are found to be sensitive to environment induced disturbances. The time dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the "sideband currents" induced by the oscillating spin-orbit interaction strength can become the dominant output channel, even in the presence of moderate thermal fluctuations and random scattering events.Comment: 11 pages, 9 figures, submitted to PR

    Decoherence of molecular wave packets in an anharmonic potential

    Get PDF
    The time evolution of anharmonic molecular wave packets is investigated under the influence of the environment consisting of harmonic oscillators. These oscillators represent photon or phonon modes and assumed to be in thermal equilibrium. Our model explicitly incorporates the fact that in the case of a nonequidistant spectrum the rates of the environment induced transitions are different for each transition. The nonunitary time evolution is visualized by the aid of the Wigner function related to the vibrational state of the molecule. The time scale of decoherence is much shorter than that of dissipation, and gives rise to states which are mixtures of localized states along the phase space orbit of the corresponding classical particle. This behavior is to a large extent independent of the coupling strength, the temperature of the environment and also of the initial state.Comment: 7 pages, 4 figure
    • …
    corecore