13,221 research outputs found

    Moral Principles Applicable to Organ Transplantation

    Get PDF

    Tables of two-sided tolerance factors for normal distributions

    Get PDF
    Tables of two-sided tolerance factors for normal distribution

    Dynamical Instabilities in a two-component Bose condensate in a 1d optical lattice

    Full text link
    In this paper we carry out a stability analysis of the Bloch states of a two-component Bose-Einstein condensate confined to a 1d optical lattice. We consider two concrete systems: a mixture of two hyperfine states of Rubidium-87 and a mixture of Sodium-23 and Rubidium-87. The former is seen to exhibit similar phenomena to a single component condensate while the latter also suffers an instability to phase separation at small Bloch wave vectors. It is shown that sufficiently deep optical lattices can remove this latter instability, potentially allowing imiscible cold atoms species to be held in intimate contact and transported within an experimental system.Comment: 14 Pages, 9 figure

    Multiphase smoothed-particle hydrodynamics

    Get PDF
    We adapt the smoothed-particle hydrodynamics (SPH) technique to allow a multiphase fluid in which SPH particles of widely differing density may be freely intermixed. Applications include modelling of galaxy formation and cooling flows

    A molecular-dynamics algorithm for mixed hard-core/continuous potentials

    Get PDF
    We present a new molecular-dynamics algorithm for integrating the equations of motion for a system of particles interacting with mixed continuous/impulsive forces. This method, which we call Impulsive Verlet, is constructed using operator splitting techniques similar to those that have been used successfully to generate a variety molecular-dynamics integrators. In numerical experiments, the Impulsive Verlet method is shown to be superior to previous methods with respect to stability and energy conservation in long simulations.Comment: 18 pages, 6 postscript figures, uses rotate.st

    Fundamental relation between longitudinal and transverse conductivities in the quantum Hall system

    Full text link
    We investigate the relation between the diagonal (σxx\sigma_{xx}) and off-diagonal (σxy\sigma_{xy}) components of the conductivity tensor in the quantum Hall system. We calculate the conductivity components for a short-range impurity potential using the linear response theory, employing an approximation that simply replaces the self-energy by a constant value i/(2τ)-i \hbar /(2 \tau) with τ\tau the scattering time. The approximation is equivalent to assuming that the broadening of a Landau level due to disorder is represented by a Lorentzian with the width Γ=/(2τ)\Gamma = \hbar /(2 \tau). Analytic formulas are obtained for both σxx\sigma_{xx} and σxy\sigma_{xy} within the framework of this simple approximation at low temperatures. By examining the leading terms in σxx\sigma_{xx} and σxy\sigma_{xy}, we find a proportional relation between dσxy/dB\mathrm{d}\sigma_{xy}/\mathrm{d}B and Bσxx2B \sigma_{xx}^2. The relation, after slight modification to account for the long-range nature of the impurity potential, is shown to be in quantitative agreement with experimental results obtained in the GaAs/AlGaAs two-dimensional electron system at the low magnetic-field regime where spin splitting is negligibly small.Comment: 21 pages, 8 figures, accepted for publication in J. Phys.: Condens. Matte

    Magnetoroton scattering by phonons in the fractional quantum Hall regime

    Full text link
    Motivated by recent phonon spectroscopy experiments in the fractional quantum Hall regime we consider processes in which thermally excited magnetoroton excitations are scattered by low energy phonons. We show that such scattering processes can never give rise to dissociation of magnetorotons into unbound charged quasiparticles as had been proposed previously. In addition we show that scattering of magnetorotons to longer wavelengths by phonon absorption is possible because of the shape of the magnetoroton dispersion curve and it is shown that there is a characteristic cross-over temperature above which the rate of energy transfer to the electron gas changes from an exponential (activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev
    corecore