5 research outputs found

    Improving Unsegmented Dialogue Turns Annotation with N-gram Transducers

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    Process mining methodology for health process tracking using real-time indoor location systems

    Full text link
    [EN] The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015.The authors want to acknowledge the work MySphera Company and Hospital General for their invaluable support. This work was supported in part by several projects; FASyS-Absolutely Safe and Healthy Factory (Spanish Ministry of Industry. CEN-20091034), MOSAIC-Models and simulation techniques for discovering diabetes influence factors (ICT-FP7-600914) and HEARTWAYS-Advanced Solutions for Supporting Cardiac Patients in Rehabilitation (ICT-SME-315659) EU Projects; and organizations like Tecnologias para la Salud y el Bienestar (TSB S.A.) and the Universitat Politecnica de Valencia.Fernández Llatas, C.; Lizondo, A.; Montón Sánchez, E.; Benedí Ruiz, JM.; Traver Salcedo, V. (2015). Process mining methodology for health process tracking using real-time indoor location systems. Sensors. 12:29821-29840. https://doi.org/10.3390/s151229769S298212984012Weske, M., van der Aalst, W. M. P., & Verbeek, H. M. W. (2004). Advances in business process management. Data & Knowledge Engineering, 50(1), 1-8. doi:10.1016/j.datak.2004.01.001Davidoff, F., Haynes, B., Sackett, D., & Smith, R. (1995). Evidence based medicine. BMJ, 310(6987), 1085-1086. doi:10.1136/bmj.310.6987.1085Reilly, B. M. (2004). The essence of EBM. BMJ, 329(7473), 991-992. doi:10.1136/bmj.329.7473.991Weiland, D. E. (1997). Why use clinical pathways rather than practice guidelines? The American Journal of Surgery, 174(6), 592-595. doi:10.1016/s0002-9610(97)00196-7Hunter, B., & Segrott, J. (2008). Re-mapping client journeys and professional identities: A review of the literature on clinical pathways. International Journal of Nursing Studies, 45(4), 608-625. doi:10.1016/j.ijnurstu.2007.04.001Lenz, R., Blaser, R., Beyer, M., Heger, O., Biber, C., Bäumlein, M., & Schnabel, M. (2007). IT support for clinical pathways—Lessons learned. International Journal of Medical Informatics, 76, S397-S402. doi:10.1016/j.ijmedinf.2007.04.012Blaser, R., Schnabel, M., Biber, C., Bäumlein, M., Heger, O., Beyer, M., … Kuhn, K. A. (2007). Improving pathway compliance and clinician performance by using information technology. International Journal of Medical Informatics, 76(2-3), 151-156. doi:10.1016/j.ijmedinf.2006.07.006Schuld, J., Schäfer, T., Nickel, S., Jacob, P., Schilling, M. K., & Richter, S. (2011). Impact of IT-supported clinical pathways on medical staff satisfaction. A prospective longitudinal cohort study. International Journal of Medical Informatics, 80(3), 151-156. doi:10.1016/j.ijmedinf.2010.10.012Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Schilling, M., Richter, S., Jacob, P., & Lindemann, W. (2006). Klinische Behandlungspfade. DMW - Deutsche Medizinische Wochenschrift, 131(17), 962-967. doi:10.1055/s-2006-939876Zannini, L., Cattaneo, C., Peduzzi, P., Lopiccoli, S., & Auxilia, F. (2012). Experimenting clinical pathways in general practice: a focus group investigation with Italian general practitioners. Journal of Public Health Research, 1(2), 30. doi:10.4081/jphr.2012.e30Rubin, H. R. (2001). The advantages and disadvantages of process-based measures of health care quality. International Journal for Quality in Health Care, 13(6), 469-474. doi:10.1093/intqhc/13.6.469Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080. doi:10.1109/tsmcc.2007.905750Li, N., & Becerik-Gerber, B. (2011). Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics, 25(3), 535-546. doi:10.1016/j.aei.2011.02.004Curran, K., Furey, E., Lunney, T., Santos, J., Woods, D., & McCaughey, A. (2011). An evaluation of indoor location determination technologies. Journal of Location Based Services, 5(2), 61-78. doi:10.1080/17489725.2011.562927Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Stübig, T., Zeckey, C., Min, W., Janzen, L., Citak, M., Krettek, C., … Gaulke, R. (2014). Effects of a WLAN-based real time location system on outpatient contentment in a Level I trauma center. International Journal of Medical Informatics, 83(1), 19-26. doi:10.1016/j.ijmedinf.2013.10.001Najera, P., Lopez, J., & Roman, R. (2011). Real-time location and inpatient care systems based on passive RFID. Journal of Network and Computer Applications, 34(3), 980-989. doi:10.1016/j.jnca.2010.04.011Huang, Z., Dong, W., Ji, L., Gan, C., Lu, X., & Duan, H. (2014). Discovery of clinical pathway patterns from event logs using probabilistic topic models. Journal of Biomedical Informatics, 47, 39-57. doi:10.1016/j.jbi.2013.09.003Caron, F., Vanthienen, J., Vanhaecht, K., Limbergen, E. V., De Weerdt, J., & Baesens, B. (2014). Monitoring care processes in the gynecologic oncology department. Computers in Biology and Medicine, 44, 88-96. doi:10.1016/j.compbiomed.2013.10.015Bouarfa, L., & Dankelman, J. (2012). Workflow mining and outlier detection from clinical activity logs. Journal of Biomedical Informatics, 45(6), 1185-1190. doi:10.1016/j.jbi.2012.08.003Disco https://fluxicon.com/disco/Van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142. doi:10.1109/tkde.2004.47Wantland, D. J., Portillo, C. J., Holzemer, W. L., Slaughter, R., & McGhee, E. M. (2004). The Effectiveness of Web-Based vs. Non-Web-Based Interventions: A Meta-Analysis of Behavioral Change Outcomes. Journal of Medical Internet Research, 6(4), e40. doi:10.2196/jmir.6.4.e40Bellazzi, R., Montani, S., Riva, A., & Stefanelli, M. (2001). Web-based telemedicine systems for home-care: technical issues and experiences. Computer Methods and Programs in Biomedicine, 64(3), 175-187. doi:10.1016/s0169-2607(00)00137-1Van der Aalst, W. (2012). Process Mining. ACM Transactions on Management Information Systems, 3(2), 1-17. doi:10.1145/2229156.2229157MySphera Company http://mysphera.com/Van der Aalst, W. M. P., & de Medeiros, A. K. A. (2005). Process Mining and Security: Detecting Anomalous Process Executions and Checking Process Conformance. Electronic Notes in Theoretical Computer Science, 121, 3-21. doi:10.1016/j.entcs.2004.10.01

    Early Detection of Refractive Errors by Photorefraction at School Age

    No full text
    Early detection and treatment of refractive defects during school age are essential to avoid irreversible future vision loss and potential school problems. Previously, vision screening of preschool children used methods based on subjective visual acuity; however, technologies such as photorefraction have promoted the detection of refractive errors quickly and easily. In this study, 1347 children from 10 schools in Madrid aged 4 to 12 years participated in a program of early detection of visual problems, which consisted of visual screening composed of anamnesis and photorefraction with a PlusOptix A12R. The prevalence of refractive errors was analyzed in terms of spherical equivalent, cylinder and its orientation, and potential cases of development of high myopia or amblyopia. Hyperopia predominates in the early years, but the number of myopic subjects is higher than that of hyperopic subjects from the age of ten onwards. At all ages, the predominant orientation of astigmatism was with-the-rule. On average, 80% of the myopic subjects were uncorrected. Potential high myopia increased with age, from 4 to 21% of the measured population. Potential amblyopia cases decreased across age groups, from 19 to 13.7%. There is a need to raise awareness of the importance of vision screening at school age to address vision problems
    corecore