5 research outputs found

    Multicenter prospective evaluation of diagnostic potential of flow cytometric aberrancies in myelodysplastic syndromes by the ELN iMDS flow working group.

    No full text
    BACKGROUND: Myelodysplastic syndromes (MDS) represent a diagnostic challenge. This prospective multicenter study was conducted to evaluate pre-defined flow cytometric markers in the diagnostic work-up of MDS and chronic myelomonocytic leukemia (CMML). METHODS: Thousand six hundred and eighty-two patients with suspected MDS/CMML were analyzed by both cytomorphology according to WHO 2016 criteria and flow cytometry according to ELN recommendations. Flow cytometric readout was categorized 'non-MDS' (i.e. no signs of MDS/CMML and limited signs of MDS/CMML) and 'in agreement with MDS' (i.e., in agreement with MDS/CMML). RESULTS: Flow cytometric readout categorized 60% of patients in agreement with MDS, 28% showed limited signs of MDS and 12% had no signs of MDS. In 81% of cases flow cytometric readouts and cytomorphologic diagnosis correlated. For high-risk MDS, the level of concordance was 92%. A total of 17 immunophenotypic aberrancies were found independently related to MDS/CMML in ≥1 of the subgroups of low-risk MDS, high-risk MDS, CMML. A cut-off of ≥3 of these aberrancies resulted in 80% agreement with cytomorphology (20% cases concordantly negative, 60% positive). Moreover, >3% myeloid progenitor cells were significantly associated with MDS (286/293 such cases, 98%). CONCLUSION: Data from this prospective multicenter study led to recognition of 17 immunophenotypic markers allowing to identify cases 'in agreement with MDS'. Moreover, data emphasizes the clinical utility of immunophenotyping in MDS diagnostics, given the high concordance between cytomorphology and the flow cytometric readout. Results from the current study challenge the application of the cytomorphologically defined cut-off of 5% blasts for flow cytometry and rather suggest a 3% cut-off for the latter

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies. © 2022. The Author(s), under exclusive licence to Springer Nature Limited

    Newer Aspects on Anaerobic Bacteria and Infections: A Symposium Held at the Swedish Medical Society, Stockholm, Sweden, November 19, 1981

    No full text
    corecore