57 research outputs found

    Errors in chromosome segregation during oogenesis and early embryogenesis

    Get PDF
    Errors in chromosome segregation occurring during human oogenesis and early embryogenesis are very common. Meiotic chromosome development during oogenesis is subdivided into three distinct phases. The crucial events, including meiotic chromosome pairing and recombination, take place from around 11 weeks until birth. Oogenesis is then arrested until ovulation, when the first meiotic division takes place, with the second meiotic division not completed until after fertilization. It is generally accepted that most aneuploid fetal conditions, such as trisomy 21 Down syndrome, are due to maternal chromosome segregation errors. The underlying reasons are not yet fully understood. It is also clear that superimposed on the maternal meiotic chromosome segregation errors, there are a large number of mitotic errors taking place post-zygotically during the first few cell divisions in the embryo. In this chapter, we summarise current knowledge of errors in chromosome segregation during oogenesis and early embryogenesis, with special reference to the clinical implications for successful assisted reproduction

    Retinoic Acid Signalling and the Control of Meiotic Entry in the Human Fetal Gonad

    Get PDF
    The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis

    GDF9 is Transiently Expressed in Oocytes before Follicle Formation in the Human Fetal Ovary and is Regulated by a Novel NOBOX Transcript

    Get PDF
    During human fetal ovary development, the process of primordial follicle formation is immediately preceded by a highly dynamic period of germ cell and somatic cell reorganisation. This is regulated by germ-cell specific transcription regulators, by the conserved RNA binding proteins DAZL and BOLL and by secreted growth factors of the TGFβ family, including activin βA: these all show changing patterns of expression preceding follicle formation. In mice, the transcription factor Nobox is essential for follicle formation and oocyte survival, and NOBOX regulates the expression of GDF9 in humans. We have therefore characterised the expression of GDF9 in relation to these known key factors during follicle formation in the human fetal ovary. mRNA levels of GDF9, BMP15 and NOBOX were quantified by qRT-PCR and showed dramatic increases across gestation. GDF9 protein expression was localised by immunohistochemistry to the same population of germ cells as those expressing activin βA prior to follicle formation but did not co-localise with either BOLL or DAZL. A novel NOBOX isoform was identified in fetal ovary that was shown to be capable of up-regulating the GDF9 promoter in reporter assays. Thus, during oogenesis in humans, oocytes go through a dynamic and very sharply demarcated sequence of changes in expression of these various proteins, even within individual germ cell nests, likely to be of major functional significance in determining selective germ cell survival at this key stage in ovarian development. Transcriptional variation may contribute to the range of age of onset of POI in women with NOBOX mutations

    A Developmental Stage-Specific Switch from DAZL to BOLL Occurs during Fetal Oogenesis in Humans, but Not Mice

    Get PDF
    The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL) that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX), but not male (XY) human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/-) mouse as a model for understanding BOLL function during human oogenesis

    FMRP associates with cytoplasmic granules at the onset of meiosis in the human oocyte

    Get PDF
    Germ cell development and primordial follicle formation during fetal life is critical in establishing the pool of oocytes that subsequently determines the reproductive lifespan of women. Fragile X-associated primary ovarian insufficiency (FXPOI) is caused by inheritance of the FMR1 premutation allele and approximately 20% of women with the premutation allele develop ovarian dysfunction and premature ovarian insufficiency. However, the underlying disease mechanism remains obscure, and a potential role of FMRP in human ovarian development has not been explored. We have characterised the expression of FMR1 and FMRP in the human fetal ovary at the time of germ cell entry into meiosis through to primordial follicle formation. FMRP expression is exclusively in germ cells in the human fetal ovary. Increased FMRP expression in germ cells coincides with the loss of pluripotency-associated protein expression, and entry into meiosis is associated with FMRP granulation. In addition, we have uncovered FMRP association with components of P-bodies and stress granules, suggesting it may have a role in mRNA metabolism at the time of onset of meiosis. Therefore, this data support the hypothesis that FMRP plays a role regulating mRNAs during pivotal maturational processes in fetal germ cells, and ovarian dysfunction resulting from FMR1 premutation may have its origins during these stages of oocyte development

    Effect of 4-octylphenol on germ cell number in cultured human fetal gonads

    No full text

    Number of germ cells and somatic cells in human fetal testes during the first weeks after sex differentiation. Hum Reprod 18,13–18.

    No full text
    BACKGROUND: This study presents the number of germ cells and somatic cells in human fetal ovaries during week 6 to week 9 post conception, i.e. the first weeks following sex differentiation of the gonads. METHODS: One ovary with attached mesonephros from each of 11 individual legal abortions was used for estimation of cell numbers. After recovery of the fetus, the ovary-mesonephric complexes were immediately isolated, fixed and processed for histology. A stereological method was utilized to estimate the total number of oogonia in all ovaries and somatic cells in seven of them. RESULTS: The number of oogonia per ovary increased from ~26 000 in week 6 to ~250 000 in week 9 and somatic cells from ~240 000 to ~1.4Ø‹10 6 . The ratio of oogonia to somatic cells tended to increase throughout the period. The concentration of oogonia was similar in the cranial (mesonephric connected) part and the caudal part of the ovaries. CONCLUSIONS: This is the first stereological estimation of the number of oogonia and somatic cells in human fetal ovaries, and the first estimation of germ cells and somatic cells in ovaries aged <9 weeks. The number of oogonia in week 9 is comparable to the numbers previously published based on non-stereological estimations. We found early stages of meiosis in fetal ovaries from week 9
    • …
    corecore