374 research outputs found

    Dense Gas, Massive Stars, and Ionising Radiation: Simulating Stellar Feedback in Spiral-Arm Molecular Clouds

    Get PDF
    Star formation (SF) has been continuous since the Universe was 200 million years old. It occurs in the interstellar medium (ISM) – the gas and dust between stars within galaxies. The majority of SF occurs inside giant molecular clouds (GMCs) – the most massive agglomerations of dense gas within the ISM – typically the stars form in clusters. Initially the SF is governed solely by a GMC’s morphology, but, as stars form, the energy and momentum they inject into their surroundings – stellar feedback – affects ongoing star formation within the GMC. The effects of this feedback not only help to break up the cloud, but affect the wider ISM, and hence influence both neighbouring GMC evolution and future GMC formation. This thesis explores how two forms of stellar feedback – photoionisation and supernova (SN) – affect Milky Way-like spiral arm regions through the use of nu- merical hydrodynamic simulations. The numerical initial conditions are created by extracting a 500 pc2 region from simulations of whole galaxies. This means the simulations begin with a ‘realistic’ arrangement of neighbouring GMCs. The ISM is affected by the warm (104 K) HII regions that form and expand around massive photoionising stars and the hot (106 K) SNe ejecta that are emitted from the same stars at the end of their lifetimes. In these simulations photoionisation breaks GMCs and the denser clumps in their substructure up into a larger number of objects while, at the same time, increasing the total mass of dense ISM. This results in more rapid, and partially displaced, SF when compared with simulations without stellar feedback. The main cause of these effects is the compression of dense, but non-star forming, gas from multiple sides by HII regions. SNe have little effect on SF on spiral arm scales. However, SNe are able to heat large regions of the ISM to high temperatures, but only if the gas has already been exposed to photoionising feedback

    Mapping the dynamic interactions between vortex species in highly anisotropic superconductors

    Full text link
    Here we use highly sensitive magnetisation measurements performed using a Hall probe sensor on single crystals of highly anisotropic high temperature superconductors Bi2Sr2CaCu2O8Bi_{2}Sr_{2}CaCu_{2}O_{8} to study the dynamic interactions between the two species of vortices that exist in such superconductors. We observe a remarkable and clearly delineated high temperature regime that mirrors the underlying vortex phase diagram. Our results map out the parameter space over which these dynamic interaction processes can be used to create vortex ratchets, pumps and other fluxonic devices.Comment: 7 pages, 3 figures, to be published in Supercond. Sci. Techno

    Manipulation of magnetic-flux landscapes in superconducting Bi2Sr2CaCu2O8 + δ crystals

    Full text link
    We demonstrate experimentally that the micromagnetic profile of the out-of-plane component of magnetic induction of layered superconductors, Bz, can be manipulated by varying the in-plane magnetic field, H∥. Moving Josephson vortices, confined between layers, drag pancake vortex stacks carrying out-of-plane flux, and the magnetic profile, Bz(x), can be controllably shaped across the entire sample. Depending on the magnetic history and temperature we can increase or decrease the out-of-plane flux density at the center and near the edges of the crystal by as much as 40%, realising both “convex and concave magnetic flux lenses”. Our experimental results are well described by molecular dynamics simulations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58115/2/epl_76_6_1151.pd

    Continuum versus discrete flux behaviour in large mesoscopic Bi(2)Sr(2)CaCu(2)O(8+delta) disks

    Full text link
    Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obtained by directly mapping the magnetic induction profiles of the disks at different applied fields can be quite successfully fitted to analytic models which assume a continuous distribution of flux in the sample. At low fields, however, we do observe clear signatures of the underlying discrete vortex structure and can resolve the characteristic mesoscopic compression of vortex clusters in increasing magnetic fields. Even at higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on "local" magnetisation curves as a function of the applied field. Our observations are in excellent agreement with molecular dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviours in our system.Comment: Submitted to Europhysics Letter

    Single donor ionization energies in a nanoscale CMOS channel

    Full text link
    One consequence of the continued downwards scaling of transistors is the reliance on only a few discrete atoms to dope the channel, and random fluctuations of the number of these dopants is already a major issue in the microelectonics industry. While single-dopant signatures have been observed at low temperature, studying the impact of only one dopant up to room temperature requires extremely small lengths. Here, we show that a single arsenic dopant dramatically affects the off-state behavior of an advanced microelectronics field effect transistor (FET) at room temperature. Furthermore, the ionization energy of this dopant should be profoundly modified by the close proximity of materials with a different dielectric constant than the host semiconductor. We measure a strong enhancement, from 54meV to 108meV, of the ionization energy of an arsenic atom located near the buried oxide. This enhancement is responsible for the large current below threshold at room temperature and therefore explains the large variability in these ultra-scaled transistors. The results also suggest a path to incorporating quantum functionalities into silicon CMOS devices through manipulation of single donor orbitals

    Geometry-dependent penetration fields in superconducting Bi2Sr2CaCu2O8+delta platelets

    Get PDF

    Magnetoresistance of a 2-dimensional electron gas in a random magnetic field

    Full text link
    We report magnetoresistance measurements on a two-dimensional electron gas (2DEG) made from a high mobility GaAs/AlGaAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation.Comment: REVTEX 3.0, 11 pages, 3 Postscript figures appended. The manuscript can also be obtained from our World Wide Web server: http://roemer.fys.ku.dk/randmag.ht

    Re-entrant resonant tunneling

    Full text link
    We study the effect of electron-electron interactions on the resonant-tunneling spectroscopy of the localized states in a barrier. Using a simple model of three localized states, we show that, due to the Coulomb interactions, a single state can give rise to two resonant peaks in the conductance as a function of gate voltage, G(Vg). We also demonstrate that an additional higher-order resonance with Vg-position in between these two peaks becomes possibile when interactions are taken into account. The corresponding resonant-tunneling process involves two-electron transitions. We have observed both these effects in GaAs transistor microstructures by studying the time evolution of three adjacent G(Vg) peaks caused by fluctuating occupation of an isolated impurity (modulator). The heights of the two stronger peaks exibit in-phase fluctuations. The phase of fluctuations of the smaller middle peak is opposite. The two stronger peaks have their origin in the same localized state, and the third one corresponds to a co-tunneling process.Comment: 9 pages, REVTeX, 4 figure
    corecore