15,342 research outputs found

    Extending PT symmetry from Heisenberg algebra to E2 algebra

    Full text link
    The E2 algebra has three elements, J, u, and v, which satisfy the commutation relations [u,J]=iv, [v,J]=-iu, [u,v]=0. We can construct the Hamiltonian H=J^2+gu, where g is a real parameter, from these elements. This Hamiltonian is Hermitian and consequently it has real eigenvalues. However, we can also construct the PT-symmetric and non-Hermitian Hamiltonian H=J^2+igu, where again g is real. As in the case of PT-symmetric Hamiltonians constructed from the elements x and p of the Heisenberg algebra, there are two regions in parameter space for this PT-symmetric Hamiltonian, a region of unbroken PT symmetry in which all the eigenvalues are real and a region of broken PT symmetry in which some of the eigenvalues are complex. The two regions are separated by a critical value of g.Comment: 8 pages, 7 figure

    Vector Casimir effect for a D-dimensional sphere

    Get PDF
    The Casimir energy or stress due to modes in a D-dimensional volume subject to TM (mixed) boundary conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included. Together with earlier results found for scalar modes (TE modes), this gives the Casimir effect for fluctuating ``electromagnetic'' (vector) fields inside and outside a spherical shell. Known results for three dimensions, first found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes: Poles occur in the stress at positive even dimensions, and cusps (logarithmic singularities) occur for integer dimensions D1D\le1. Particular attention is given the interesting case of D=2.Comment: 20 pages, 1 figure, REVTe

    Model of supersymmetric quantum field theory with broken parity symmetry

    Get PDF
    Recently, it was observed that self-interacting scalar quantum field theories having a non-Hermitian interaction term of the form g(iϕ)2+δg(i\phi)^{2+\delta}, where δ\delta is a real positive parameter, are physically acceptable in the sense that the energy spectrum is real and bounded below. Such theories possess PT invariance, but they are not symmetric under parity reflection or time reversal separately. This broken parity symmetry is manifested in a nonzero value for , even if δ\delta is an even integer. This paper extends this idea to a two-dimensional supersymmetric quantum field theory whose superpotential is S(ϕ)=ig(iϕ)1+δ{\cal S}(\phi)=-ig(i\phi)^{1+\delta}. The resulting quantum field theory exhibits a broken parity symmetry for all δ>0\delta>0. However, supersymmetry remains unbroken, which is verified by showing that the ground-state energy density vanishes and that the fermion-boson mass ratio is unity.Comment: 20 pages, REVTeX, 11 postscript figure

    Comment on ``Structure of exotic nuclei and superheavy elements in a relativistic shell model''

    Get PDF
    A recent paper [M. Rashdan, Phys. Rev. C 63, 044303 (2001)] introduces the new parameterization NL-RA1 of the relativistic mean-field model which is claimed to give a better description of nuclear properties than earlier ones. Using this model ^{298}114 is predicted to be a doubly-magic nucleus. As will be shown in this comment these findings are to be doubted as they are obtained with an unrealistic parameterization of the pairing interaction and neglecting ground-state deformation.Comment: 2 pages REVTEX, 3 figures, submitted to comment section of Phys. Rev. C. shortened and revised versio

    Chaotic systems in complex phase space

    Full text link
    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviors of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.Comment: 22 page, 16 figure

    PT-Symmetry Quantum Electrodynamics--PTQED

    Full text link
    The construction of PT\mathcal{PT}-symmetric quantum electrodynamics is reviewed. In particular, the massless version of the theory in 1+1 dimensions (the Schwinger model) is solved. Difficulties with unitarity of the SS-matrix are discussed.Comment: 11 pages, 1 figure, contributed to Proceedings of 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physic

    Pairing gaps from nuclear mean-field models

    Get PDF
    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei.Comment: 17 pages, 8 figures. Accepted for publication in EPJ
    corecore