259 research outputs found

    Multi-reggeon compound states and resummed anomalous dimensions in QCD

    Get PDF
    We perform the OPE analysis of the contribution of colour-singlet compound states of reggeized gluons to a generic hard process in QCD and calculate the spectrum of the corresponding higher twist anomalous dimensions in multi-colour limit. These states govern high energy asymptotics of the structure functions and their energies define the intercept of the Regge singularities both in the Pomeron and the Odderon sectors. We argue that due to nontrivial analytical properties of the energy spectrum, the twist expansion does not hold for the gluonic states with the minimal energy generating the leading Regge singularities. It is restored however after one takes into account the states with larger energies whose contribution to the Regge asymptotics is subleading.Comment: 15 pages, 2 figures. Minor changes, references adde

    Principles of statistical mechanics of random networks

    Full text link
    We develop a statistical mechanics approach for random networks with uncorrelated vertices. We construct equilibrium statistical ensembles of such networks and obtain their partition functions and main characteristics. We find simple dynamical construction procedures that produce equilibrium uncorrelated random graphs with an arbitrary degree distribution. In particular, we show that in equilibrium uncorrelated networks, fat-tailed degree distributions may exist only starting from some critical average number of connections of a vertex, in a phase with a condensate of edges.Comment: 14 pages, an extended versio

    On the topological classification of binary trees using the Horton-Strahler index

    Full text link
    The Horton-Strahler (HS) index r=max(i,j)+δi,jr=\max{(i,j)}+\delta_{i,j} has been shown to be relevant to a number of physical (such at diffusion limited aggregation) geological (river networks), biological (pulmonary arteries, blood vessels, various species of trees) and computational (use of registers) applications. Here we revisit the enumeration problem of the HS index on the rooted, unlabeled, plane binary set of trees, and enumerate the same index on the ambilateral set of rooted, plane binary set of trees of nn leaves. The ambilateral set is a set of trees whose elements cannot be obtained from each other via an arbitrary number of reflections with respect to vertical axes passing through any of the nodes on the tree. For the unlabeled set we give an alternate derivation to the existing exact solution. Extending this technique for the ambilateral set, which is described by an infinite series of non-linear functional equations, we are able to give a double-exponentially converging approximant to the generating functions in a neighborhood of their convergence circle, and derive an explicit asymptotic form for the number of such trees.Comment: 14 pages, 7 embedded postscript figures, some minor changes and typos correcte

    (Borel) convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap

    Full text link
    We reconsider in some detail a construction allowing (Borel) convergence of an alternative perturbative expansion, for specific physical quantities of asymptotically free models. The usual perturbative expansions (with an explicit mass dependence) are transmuted into expansions in 1/F, where F1/g(m)F \sim 1/g(m) for mΛm \gg \Lambda while F(m/Λ)αF \sim (m/\Lambda)^\alpha for m \lsim \Lambda, Λ\Lambda being the basic scale and α\alpha given by renormalization group coefficients. (Borel) convergence holds in a range of FF which corresponds to reach unambiguously the strong coupling infrared regime near m0m\to 0, which can define certain "non-perturbative" quantities, such as the mass gap, from a resummation of this alternative expansion. Convergence properties can be further improved, when combined with δ\delta expansion (variationally improved perturbation) methods. We illustrate these results by re-evaluating, from purely perturbative informations, the O(N) Gross-Neveu model mass gap, known for arbitrary NN from exact S matrix results. Comparing different levels of approximations that can be defined within our framework, we find reasonable agreement with the exact result.Comment: 33 pp., RevTeX4, 6 eps figures. Minor typos, notation and wording corrections, 2 references added. To appear in Phys. Rev.

    Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation

    Full text link
    We compute the axial and pseudoscalar form factors of the nucleon in the Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev equation for the nucleon wave function and determine the matrix elements of the axialvector and pseudoscalar isotriplet currents. Our only input is a well-established and phenomenologically successful ansatz for the nonperturbative quark-gluon interaction. As a consequence of the axial Ward-Takahashi identity that is respected at the quark level, the Goldberger-Treiman relation is reproduced for all current-quark masses. We discuss the timelike pole structure of the quark-antiquark vertices that enters the nucleon matrix elements and determines the momentum dependence of the form factors. Our result for the axial charge underestimates the experimental value by 20-25% which might be a signal of missing pion-cloud contributions. The axial and pseudoscalar form factors agree with phenomenological and lattice data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl

    Multiple Front Propagation Into Unstable States

    Full text link
    The dynamics of transient patterns formed by front propagation in extended nonequilibrium systems is considered. Under certain circumstances, the state left behind a front propagating into an unstable homogeneous state can be an unstable periodic pattern. It is found by a numerical solution of a model of the Fr\'eedericksz transition in nematic liquid crystals that the mechanism of decay of such periodic unstable states is the propagation of a second front which replaces the unstable pattern by a another unstable periodic state with larger wavelength. The speed of this second front and the periodicity of the new state are analytically calculated with a generalization of the marginal stability formalism suited to the study of front propagation into periodic unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+rComment: 12 page

    Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis

    Get PDF
    The Boubaker polynomials are investigated in this paper. Using Riordan matrices analysis, a sequence of relations outlining the relations with Chebyshev and Fermat polynomials have been obtained. The obtained expressions are a meaningful supply to recent applied physics studies using the Boubaker polynomials expansion scheme (BPES).Comment: 12 pages, LaTe

    Self-Similar Factor Approximants

    Full text link
    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving a novel type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are named the self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of the self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions which include a variety of transcendental functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties.Comment: 22 pages + 11 ps figure

    Schwinger-Dyson approach to non-equilibrium classical field theory

    Get PDF
    In this paper we discuss a Schwinger-Dyson [SD] approach for determining the time evolution of the unequal time correlation functions of a non-equilibrium classical field theory, where the classical system is described by an initial density matrix at time t=0t=0. We focus on λϕ4\lambda \phi^4 field theory in 1+1 space time dimensions where we can perform exact numerical simulations by sampling an ensemble of initial conditions specified by the initial density matrix. We discuss two approaches. The first, the bare vertex approximation [BVA], is based on ignoring vertex corrections to the SD equations in the auxiliary field formalism relevant for 1/N expansions. The second approximation is a related approximation made to the SD equations of the original formulation in terms of ϕ\phi alone. We compare these SD approximations as well as a Hartree approximation with exact numerical simulations. We find that both approximations based on the SD equations yield good agreement with exact numerical simulations and cure the late time oscillation problem of the Hartree approximation. We also discuss the relationship between the quantum and classical SD equations.Comment: 36 pages, 5 figure

    Dependence of Variational Perturbation Expansions on Strong-Coupling Behavior. Inapplicability of delta-Expansion to Field Theory

    Get PDF
    We show that in applications of variational theory to quantum field theory it is essential to account for the correct Wegner exponent omega governing the approach to the strong-coupling, or scaling limit. Otherwise the procedure either does not converge at all or to the wrong limit. This invalidates all papers applying the so-called delta-expansion to quantum field theory.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/34
    corecore