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Abstract

We perform the OPE analysis of the contribution of colour-singlet compound states of reggeized gluons to a generic hard
process in QCD and calculate the spectrum of the corresponding higher twist anomalous dimensions in multi-colour limit. These
states govern high energy asymptotics of the structure functions and their energies define the intercept of the Regge singularities
both in the pomeron and the odderon sectors. We argue that due to nontrivial analytical properties of the energy spectrum, the
twist expansion does not hold for the gluonic states with the minimal energy generating the leading Regge singularities. It is
restored however after one takes into account the states with larger energies whose contribution to the Regge asymptotics is
subleading.

0 2004 Published by Elsevier B.Upen access under CC BY license,

1. Introduction hard scaleQ and identify the expansion coefficients
as the forward matrix elements of Wilson operators
Scale dependence of hadronic cross-sections isO¢ _;(0) of increasing twistz > 2 and Lorentz spin
driven by anomalous dimensions calculable in pertur- (] -D>1
bative QCD as series in the coupling constant. The _
classical example is provided by the deeply inelastic F(j 0 )

scattering of a virtual photop*(q) off a (polarized) 1

hadron with momentunp,,. In that case, the oper- _ /dxxj_zF(x’ Q2)
ator product expansion (OPE) allows one to expand

the moments of the structure functidtix, 02) (with 0

x=0%/2(p-q)andQ? = —qs) in inverse powers of

> 1
=2 5 GG es(29) (105, Olp). (A1)
n=2 a
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ber depends omand rapidly grows for > 3. TheQ?- anomalousQ?-dependence of (x, 0?). Expanding
dependence af (j, 0?) follows from the dependence the resulting expression for the momeitsj, 0?) in

of the twistn operators on the normalization scale powers of 1/Q one can separate the twisteontri-

u? = Q2. In general, these operators mix under renor- bution and calculate the corresponding anomalous di-
malization. Diagonalizing the corresponding mixing mensionsy(;) for j — 1.3 Still, the actual form of
matrix, one can construct multiplicatively renormaliz- the underlying twist: operators remains to be found.

able operators It has been conjectured [4,5] that they belong to the
d class of quasipartonic operators.
de—QZ (pIOZ’j O)|p) = yna(j)(p|(92,j(0)|p), (1.2) To begin with, we recall that in the BFKL approach,

_ _ ~in the generalized leading logarithmic approximation
where the anomalous dimension has a perturbative (GLLA) [6], the structure function takes the following

expansiony(j) = Y721 v, () (s (Q3) /)" with  form at smallx
the expansion coefficiem;s,ffn(j) having a nontrivial
j-dependence. F(x, Q2) _ Z &SN—zFN (x, QZ),

For j — 1, the moments (1.1) receive the domi-
nant contribution from the smallregion, in which the )
structure function has a Regge behavisux, 0?) ~ Fy(x, Q%) =) (1/x) = @p1 (0)pf (M), (1.3)
(1/x)*~1, with « close to unity. To find the scale q
dependence of the structure functidi(x, Q?) at o 5 )
small x, one has to analytically continue the anom- With @ = asNc/m. Here Fy(x, 0%) describes the
alous dimensions/?(j) from positive integerj > 2 contribution of color-singlet compound states built

n = . .
to “unphysical’ j ~ 1 and invert the moments (1.1). oM N =2,3,... reggeized gluons, or briefly the-
For twist two this can be done using the well-known reggeon states. These states satisfy a Schrédinger-like
DGLAP expressions foy®_, (). For twistn > 3, the equat_lon for.the system & gluons mteractlng on the
calculation ofy4(j) is much more involved already two-dimensional plane of transverse coordinates [6].
for positive integerj > 2 mainly because the num-  Their spectrum is labelled in (1.3) by the set of quan-
ber of operators increases with the twist and the size UM numbersy. Forx — 0, the sum ovey in (1.3)
of the corresponding mixing matrices dependsjon 'S dominated by the state with the minimal energy
As a consequence, analytical continuation of anom- £~ (). The contribution szth's stateigdfév((x; o)
alous dimensions of the operators of twist 3 within has the Regge formiy (x, 0%) ~ (1/x)~**V’ and
the conventional OPE approach tumns out to be an ex-ItS @-dependence is carried by the residue factors
tremely difficult (if not impossible) task. B5-(Q)B} (M) which measure the overlap of the wave

Another approach to finding the asymptotic behav- function of the state with the wave functions of scat-
iour of the anomalous dimensions (j) for j — 1 tered particles. _
has been proposed in Ref. [1]. It relies on the re-  FOr &nx ~1 and x— 0, the sum ovem in
lation between the twist expansion of the moments (1-3) is dominated by the/ = 2 term and gives rise
(1.1) and the smalt- behaviour of the structure func-  (© the BFKL pomeron [2]. Expanding its contribution
tions F(x, 0?) obtained within the framework of the 10 (1.1) in powers of 10, one finds that th&v =2
BEKL approach [2]. Since the anomalous dimensions [€Jgeon states generate an infinite tower of composite
do not depend on the choice of the scattered parti- 9/uOnic operators of increasing twist> 2 [4]. Atn =
cles, one can simplify the analysis by considering the 2. the anomalous dimensions of twist-two (gluonic)
deeply inelastic scattering of a virtual photph(Q?) operators,yz(j), satisfy in the leading logarithmic
off a perturbative “onium” state of the mag§ = M?, approximation.a;/(j — 1) = fixed andj — 1, the
such thatAg, « M? < Q2. In the BFKL approach,
one obtaln_s the Sma_kl— behaviour in this _process 3 It is known [3], that the OPE expansion breaks down for very
by resumming a special class of perturbative correc- small values ok, away from the region ki/x) < InZ(QZ/A(ZgCD)'

tions enhanced by powers @f In(1/x). Among them We shall assume tha®? is large enough so that this condition is
there arey, In(1/x) In(Q2/M?)-terms responsible for fulfilled.

N>2
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master equation [1] geon states [9,10] and on the exact expressions for
. . the energy spectrum of these states found in [11,
Qg _ . . 12].
(j - 1) =20 =9 (o)) — ¥ (1= r20)). The Letter is organized as follows. In Section 2 we
(1.4) summarize the properties of the multi-reggeon states,
where ¢ (x) = dInT"(x)/dx is the Euler digamma  perform the OPE expansion of their contribution to
function. Its solution looks like the structure function and establish the master equa-
B A tion for anomalous dimensions of high twist oper-
v2(j) = el +2§(3)( s ) ators. This equation involves analytical continuation
—1 j—1 of the energy spectrum of th&-reggeon states in
o \8 multi-colour QCD, which is performed in Section 3.
+2§(6)(j 51) +(9(6z§), (1.5) In Section 4 we present our results for the anom-

alous dimensions. Section 5 contains concluding re-
with ¢ (k) the Riemann zeta-function. Eqg. (1.5) is in  marks.

agreement with the well-known two-loop expression

for the twist-two anomalous dimensiopn®®. The

series (1.5) diverges for — 1 = O(«y) and its radius 2. Reggeon compound statesin multi-colour QCD
of convergence is determined by the right-most Regge

singularity, y2(j) ~ /7 — jo with jo =1+ 4a;In2
being the intercept of the BFKL pomeron [2].

The contribution of theN > 3 reggeon states
to (1.3) is suppressed by a power of the coupling
constant and it serves to unitarize the asymptotic
behaviour of the structure functiofi(x, Q%) at very
high energy. To perform the OPE analysis of these Fy(j, 0%) =Y —————BL.(Q)BF (M),
states, one has to expand the momentspfx, 02) 7 )T 1+aEn(g)
> . (2.1)
in inverse powers ofQ and match the resulting
expression forFy(j, 0?) into (1.1). Similar to the where the sum runs over the spectrum of theeg-

N = 2 case, the resummed anomalous dimensions of geon states. These states satisfy the Schrédinger equa-
these operators can be deduced from the spectrumtion [6] which possesses, in the multi-color limit, “hid-
of the underlying N-reggeon states. This program den” conserved chargesand, as a consequence, is
has been carried out in Refs. [1,4] only for the completely integrable [9,10].

N = 2 states while forN > 3 the main difficulty Due to complete integrability, the spectrum of the
was a poor understanding of the properties of the N-reggeon states in multi-colour QCD is uniquely
N-reggeon states. Later, the anomalous dimensions ofspecified by a complete set of the quantum num-
twist-four gluonic operators have been calculated in bersq = (g2, g2, ...,qn,gn) defined as eigenvalues
the double-logarithmic approximation in Refs. [7,8]. of the corresponding integrals of motion. The wave
These studies revealed that due to the presence offunction of the stateW, ({z}; Zo), depends on two-
Regge cuts, the anomalous dimension\afeggeon dimensional impact parameters 8freggeons{z} =
states has a complicated analytical structure which get (z1, ..., Zx), and the impact parameter of the center-
simplified however in the multi-color limit. Inspired  of-mass of the state;g. Introducing auxiliary com-
by this observation, we perform in the present Letter plex (anti)holomorphic coordinates,= x + iy and
the OPE analysis to th¥ > 3 compound states inthe 7z = x —iy, one finds [4] that the effective QCD Hamil-
limit N. — oo. Namely, we identify the leading twist  tonian for the system oN-reggeons is invariant un-
contribution of these states to the moments (1.1) and der conformal SL(2, C) transformations on the plane
calculate the corresponding anomalous dimensions forz — (az+b)/(cz+d) andz — (az+b)/(éz+d) with

j — 1 in the multi-color limit. Our analysis relies on  ad — bc = ad — b¢ = 1. As a consequence, its eigen-
the remarkable integrability properties of thereg- states¥, ({z}; Zo) belong to irreducible representation

Let us perform the OPE expansion of the contribu-
tion of the N reggeon compound state to the structure
function (1.1). Going over to the moment space we
find from (1.3)
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of theSL(2, C) group: (W Go) | ¥y G))
qu({Z};ZO) / N , o o
720 = dez Yy ({z); 20) (Wy ({2)s 2
- (cz0+ ) (Gzo+ d)? ]!:[1 k¥ ) (% ( 0)
- HZ =6@ (20 — 20)344', 2.4
x [Ttczr + ) @+ Py (3 Z0). (2:2) (20— 20)34¢ (2.4)

wheredgg = 8(v;, — V;Q)5nhn;l5ee’- The energy of the
N-reggeon stateEy = En(vy; np, £), is a real con-
tinuous function ofv,. For different integern;, and¢,
these functions form an infinite set of “trajectories”
(see Fig. 1 on the left).

k=1
where(s = 0,5 = 1) is the S.(2, C) spin of a single
reggeon and the parametéhs i) define theS_(2, C)
spin of theN-reggeon state. For the principal series of

the SL(2, C), their possible values are parameterized . .
S As we will see in a moment, to calculate the
by nonnegative integer, and real,

anomalous dimensions we will have to perform an
14+ny v 7= 1—ny i (2.3) analytical continuation of the energy spectrum of
2 the N-reggeon state from “physical” values of the
By the definition, the wave functiot, ({z}; Zo) has conformal spink, Eq. (2.3), to arbitrary complek.
to diagonalize the integrals of motion in theandz- Sinceh depends on two parameters, and v, one
sectorsg = (g2,42,...,qn,qn). Also, it hasto be a  has to decide which of these parameters (if not both)
single-valued function on the two-dimensioggdlane can be made complex. To this end, we note that
and be normalizable with respect to g2, C) scalar andv;, have a different physical meaning. According
product. These requirements lead to the quantizationto (2.2), they define the two-dimensional Lorentz spin,
conditions for the integrals of motion. h — h = ny;,, and the scaling dimensioth, + i =
As was shown in [12], the quantized values of 1+ 2iv,, of the N-reggeon state, respectively. For
g depend on real, and integem, > 0 defined in  the wave function¥, ({Z}; Zo) to be single-valued,
(2.3) and on the set of integefs= (¢1, ..., lan—a). n; has to be integer while reality condition foy,
Then, the sum over the&/-reggeon states in (2.1) follows from the requirement thak, ({z}; Zo) has to
looks IikeZq =Y, ff"oo dvy, Zf;,):o-The eigenstates  be normalizable with respect to the scalar product
with different quantum numbeig = ¢ (vy; nj, £) are (2.4). Performing analytical continuation, we shall
orthogonal with respect to th&.(2,C) invariant require that¥, ({z}; Zo) has to be single-valued on

h =

scalar product the z-plane for arbitrary complex: and lift the

° 1 T
6 6 }
4_\ 4]
2 2

Es 0] 0
- -2
—4 —4
-6 —61
2% 5 % B =2 4 0% 1 5 3 & 5 &

Vp, (2%

Fig. 1. The energy spectrum of thé = 3 reggeon state&3(vy; ny, £) for n, =0 and £= (0, £2), with ¢, =2,4, ..., 14 from the bottom to
the top (on the left). Analytical continuation of the energy along the imagingssxis (on the right). The branching points are indicated by
open circles. The lines connecting the branching points represefit.Re
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normalizability condition. This implies that;, has to Let us examine (2.7) in two limits: (?/M? = fixed,
be integer and analytical continuation goesjin The j— 1and (i) 02/ M? — oo, j =fixed.

function ¥, ({z}; Zo) defined in this way obeys (2.2), In the limit (i), one obtains from (2.7) that the
diagonalizes the integrals of motignbut it does not rightmost Regge singularity ofy (j, 0?) is located
satisfy (2.4) for arbitrary complek. atjy =1—a,ming En(q)

To expand (2.1) in inverse powers a, one _
examines the expression for the residue factors. They }7“1(\}) (J. 0?)
describe the coupling of th&'-reggeon states to the _1+2iv,
scattered particles and are given by o1 / dvn (ﬂ)
j—in+onv2\Q

By (Q) = f d?20(Wy+ | ¥, R0)), 11
By (M) = f d*20 (¥4 Go)|¥). (2.5) eI o .

Here the dispersion parametey describes they,-
Here the scalar product is taken with respect to (2.4) dependence of the enerdgy (¢) around its minimal
while ¥, - ({z}) and¥, ({z}) are the wave functions of value. Eq. (2.8) leads to a power rise of the. struc-
the photon and the onium state, respectively, in the im- ture function at smalk, Fy(x, Q%) ~ 0~1(1/x)/V/
pact parameter representation. Theintegration in ~ (In1/x)Y/2, in agreement with the properties of the
(2.5) ensures that the total momentum transferred in BFKL pomeron (v = 2) [2] and higherN > 3
the t-channel equals zero. Neglecting the running of reggeon states [12],
the coupling constant, one finds that the impact fac-  In the limit (i), we choosej > jy and expand the
tors depend on a single scale—the invariant mass of r.h.s. of (2.7) in powers oM/Q. ForM/Q — 0, the
the particle. From dimensional counting, the depen- vi-integration in (2.7) can be performed by deforming

(2.8)

dence is fixed by the scaling dimension of tNereg- the integration contour into the lower half-plane and
geon state picking up the contribution from singularities of the
7 4 A—1-2iv integrand in (2.7). The latter could come from singu-
B,+(Q)=CJ. 0 " larities of the impact factor€™!. Cf, possible branch
/g;l)(M) — C;IJMfl‘FZth’ (2.6) cuts of the energ¥y(¢) and zeros of the denomina-

q q _ _ o tor. Let us examine these three possibilities one after
where C. and C), are dimensionless coefficients gnother.

depending on the chargeg = q(v;;ns, £). They It is known [1] that the impact factors may have
are different from zero provided that the reggeon poles inv;, due to mixing between gluonic and quark
state has the same quantum numbers (Bose symmeyerators. Since the mixing does not affect the leading
try, C-parity, two-dimensional angular momentum) as ;' _, 1 asymptotics of gluonic operators, we can safely

hadronic states to which it couples. In particulef, neglect it. Next, one has to examine the possibility
vanishes for the reggeon states with the odderon quan-ihat the energyEn(¢) has cuts on the complex

tum numbers. Our subsequent consideration does ”Otvh—plane [7,8]. Inthat case, as we will show below, the

. q - - - ) . R j ..
rely on the properties of). and it is valid for a  jyegration around the cutin (2.7) provides a nontrivial
generic short-distance dominated process which re- -ontribution toFy (j, 0?) which contradicts (1.1). For

ceives a nonvanishing contribution from the reggeon he OPE expansion (1.1) to be valid, the contribution
states both in the odderon and the pomeron sectors. ¢ cuts should cancel in the sum (2.7) over tNe

Substituting (2.6) into (2.1), one gets reggeon states. We will argue in Section 4 that this
is exactly what happens faN > 3 reggeon states.

o0 q ~q
F"N(j, Qz) _ iz Z Z / dvy CV—_C” Finally, the poles of (2.7) originating from zeros of the
0° 4 302 J—1+asEn(q) denominator can be defined as solutions to the master
M\ L2 equation
X (—) . 2.7) ) _
0 j—14+a;En(g)=0, (2.9)
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where ¢ = q(vy;np,€). At N = 2 this equation 8,13] and leads to the following scaling behaviour of
matches (1.4) fory(j) = 1/2 — iv,. For N > 3, the structure function (1.1) at small-

the general solution to (2.9) takes the fonmp = 1

vp(as /(G — 1); np, £). As follows from (2.7), its con- F (x, QZ) ~_— exp(Z [c_1In(1/x)In Q2)_

tribution to the moments of structure function scales o"

as Fy(j, 0% ~ 0~2(M/ Q)" 12" |t matches the (2.14)

OPE expansion, Egs. (1.1) and (1.2), provided that We conclude that in order to calculate the twist-
n — 2yn(j) = 1+ 2ivy, or equivalently anomalous dimensions (2.13) one has to analytically

_ continue the energy of the&v-reggeon compound
() =0 —=1)/2—ivy=[n—(h+m]/2, (210)  statesEy(q) from “physical” values of the conformal
where h and /i are theSL(2,C) spins defined in  SL(2,C) spins (2.3) to the complex;-plane and
(2.3). This equation establishes the relation between calculate the coefficients of its Laurent expansion
the anomalous dimension of the twistoperator ~ around the poles located &b, = (n — 1)/2 with
va(j), EQ. (1.2), and solutions to (2.9). Since this 7= N =+ nx, Or equivalently: = (n +ny)/2 andh =
operator is built fromN gluon strength tensors and ~ (* —71)/2.
carries the two-dimensional Lorentz spip > 0, its
twists satisfies: > N + nj. In addition, writing the

anomalous dimension ag,(j) = y,fo)o'zs/(j 1+ 3. Analytical continuation

O(&f), one expects that solutions to (2.9) should look .

like vy, = (n — 1)/2 — % /(j — 1) + O@?) with Thg N-reggeon states are th_e eigenstates .o_f the
n > N + n,. Combining this expression together with  €ffective QCD Hamiltonian, which is a Hermitian
(2.9) one finds operator on the space of functions satisfying (2.2),

(2.3) and (2.4) withv, real andn; integer. The

En(q) ~ yn(O) 2.11) energies of these state#y(g), are smooth real
N iv, —(n—1)/2 ' functions on the real,-axis and their wave functions

Thus, in order for the moments (2.7) to admit the ¥, ({2}: Zo) are orthogonal to each other with respect

OPE expansion (1.1), the energy of thereggeon to the sc_:alar product (2.4). Performing analytical
state has to contain an infinite set of poles located continuation of the energy spectrum from the real

along imaginaryvy,-axis at (half)integer points;, = vp-axis to the complexv,-plane, one replaces the
—i(n—1)/2withn > N +ny,. Forivy, = (n—1)/2+ ¢ normalization condition (2.4) by a weaker condition
the Laurent expansion of the energy around the pole at fOf ¥4 ({z}: zo) to be a single-valued function on
€ = 0 can be written as the z-plane. This condition ensures that the two-

c_1 dimensional integrals entering (2.5) are well-defined
En(g) = IR I L (2.12) for complexvy,.

From point of view of quantum mechanics, the
problem amounts to finding analytical properties of
the energyE = E(g) as a function of the coupling
constantg = vy,. In past, this fundamental problem

. Qg & \? has been thoroughly studied in various models [14—
V() :C—l[z +C°(_> 17]. It was found that, in generaE(g) is a multi-

Its substitution into (2.9) yields the following expres-
sion for the anomalous dimension of the twisbper-
ators,y, (j) = —e,

w
valued function of complexg and the number of its

-\ 3

+ (cS _ 61671) (%) 4. ] (2.13) different branches is equal to the number of the energy

@ levels at realg when the Hamiltonian is Hermitian.

with w = j — 1. The coefficients; dependonthe twist  To study a global behaviour of the functidi(g), it
of the operator and on the quantum numbers specify- proves convenient to glue together different “sheets”
ing theN-reggeon statey = cx(n, nj, £). TheO(ay)- corresponding to its branches and considgp) as
term in the r.h.s. of (2.13) defines the anomalous di- a single-valued function on the resulting Riemann
mension in the double-logarithmic approximation [7, surface. Depending on the model, this surface may
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have a rather complicated structure and consist of the integrals of motiorg and satisfy the normaliza-

a few disconnected parts due to some additional tion condition (2.4). Going over to complay, one
symmetry [15]. A remarkable property of the Riemann preserves the former condition and relaxes the latter
surface is that it encodes tleatire spectrum of the  one.

model. Namely, knowing the energy of the ground For vy, real, the integrals of motion in the holomor-
state at rea¢, one can reconstruct the whole spectrum phic and antiholomorphic sectaf; and g, respec-

of the model by going around the branching points tively, are conjugated to each other with respect to the
to other sheets of the Riemann surface correspondingSL.(2, C) scalar product (2.4) so thak = ¢; (with

to excited energy levels. We shall demonstrate below k = 2,..., N). Going over to complex;, one finds
that upon analytical continuation to the compigxhe thatgy # g and, in general, the quantum numbers in
energy of theV-reggeon compound stat&s, shares the two sectors are independent on each other. Nev-

the same properties (fof > 3). ertheless, thé&/-reggeon spectrum contains the states,
To begin with, let us consider the well-known whose integrals of motion take either real, or imagi-
expression for the energy of thé = 2 states [2] nary values on the rea},-axis, that isgx (vy; np, £) =
+qi (vy; ny, £). For such states, the same relation be-
E2(vp, np) tween g, and g also holds for complex;, but the
1+n, 1+n, charges take complex values.
= V’( 2 +“’h) 'Hﬂ( 2 _“’h> Due to complete integrability, the energy of the
— 2y (D), 3.1) N-reggeon state is a function of the integrals of motion

EN =EN(92,G2,--->qN,qn) With g = gk (vi; np, £)
with n; nonnegative integeEz(vy, ny) is a smooth and similar forg,. For v, real, the energy spectrum
even function on the reaf,-axis. It takes its minimal  is described by infinite set of smooth real functions
value atv, = 0 and increases monotonically for Ey(vy; ns, £) labelled by integers;, and¢. The mini-

v, — £o0. After analytical continuationE2(vy, np) mal value ofEy on the realy,-axis determines the po-
becomes a meromorphic function of. It has an sition of the dominant Regge singularity, Eq. (2.8).
infinite set of poles located along imaginary-axis For v, complex, one expects that, similar to tNe= 2
ativy, =+ — 1)/2 with n > 2 4+ ny. The leading case, the complex cungy (vi; ny, £) has an infinite
twist contribution,n = 2, corresponds ta;, = 0. number of poles located dbv, = £(n — 1)/2 with

To obtain the anomalous dimension of twist two, n > N + nj;. As we will show below, this turns out

Eqg. (1.5), one matches the Laurent expansion of to be the case but in comparison with tNe= 2 case

E>(vy, 0) around the pole ab, = —i/2 into (2.12) one encounters a novel phenomenon. Fog 3, in

and applies (2.13). The BFKL pomeron is located on addition to the poles, the complex curke (vy,; ny, £)

the same complex curvEz(vy, 0) at v, = 0 so that contains (an infinite number of) square-root branching

E2(0,0) = —4In2. Forn, > 1 the complex curve points on the complexy,-plane. ThereforeEy is a

E>(vy, np) describes subleading Regge singularities multi-valued function on the compley;, -plane and its

and, at the same time, it generates contribution of different branches are enumerated by integeaind?.

higher twist. This property is in agreement with the previous find-
For N > 3 reggeon states, analytical continuation ings of Refs. [7,8].

of the energy spectrum is more subtle. Firstly, the en-  To construct the complex cun&y (vi,; ny, £), we

ergy of the N-reggeon states does not admit a sim- apply the approach developed in Ref. [12]. Namely,

ple representation like (3.1) and, secondly = we start with the expression for the enerdy

En(vp; np, €) depends on the set of 2(# 2) inte- obtained there for real, and analytically continue

gers{, which parameterize eigenvalues of the inte- it to complexv, following the procedure described

grals of motion. Thus, performing analytical contin- above. In this way, one gets

uation of Ey we have to deal with an infinite set of 1

complex curvesE y (vi; iy, £) labelled by¢-integers. Ey=>[e(h,q)+e(h,—q) + (e(1—h*,3%))"

For v, real, they define the energy of “physical” 4 _ N

N-reggeon states, whose wave functions diagonalize +(e(1=h".=q")"], (3-2)
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where theSL(2,C) spins h and i are given by
(2.3) and the notation was introduced for the quan-
tum numbers in the two sectorg,= {gx} and g =
{gr} (with k =2,..., N). In similar manner,—q =
{(=D*q}, ¢* = {g;) and—g* = {(~=1)*g}}, so that
En(—q,—q) = En(q,q). For realv, one has 1-

h* = h andg* = ¢, so that (3.2) produces real val-
ues forEx(q, q). The functione(h, g) entering (3.2)

is defined for arbitrary complexandg as

d
eth,q)=i—In[e" QG +e:h.q)]| .
de e=0

where Q(u; h, q), the so-called chiral Baxter block,
has the following integral representation

(3.3)

1

Q(u;h,q>=/dzzf“*lgl<z>.

0

(3.4)

Here the functionQ1(z) is the solution to theNth
order Fuchsian differential equation

|:(z81)Nz + (zaz)Nz_1 - 2(18Z)N

N

- iqu<zaz)N—k} 01(z) =0,

k=2

(3.5)

with the prescribed asymptotic behaviour at reg-
ular singular pointz = 1, Q1(z) ~ (1 — )~ L.
Since Q1(z) ~ InN~1; for z — 0, the chiral block
Q(u; h, q) defined in (3.4) is a meromorphic function
of u with the Nth order poles located at= ik for k
positive integer. It is convenient to normaliga (z) in
(3.4) in such a way that the residue at thiéh order
poleu =i equals unity. Together with (3.3) this leads
1

to
(-5) 6o

To evaluates (%, ¢), one has to solve the differential
equation (3.5) and match the resulting expression for
O(u; h,q), Eq. (3.4), into (3.6). This allows one to
determine (3.2) for arbitrary complexandg.

The quantization conditions for the integrals of mo-
tiong = (g2, g2, - - ., qn, gn) follow from the require-
ment for their common eigenfunctions, ({z}; Zo) to
be single-valued functions on tieplane. These con-

L 1 ehq)
Q(z+e,h,q):E—N—z N1 +0
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ditions take the form [12]

QGi+eh,q)Qi—eh,—q)
—QGi+e1-h,q)0G —e;1—h,—§) =0(°).
(3.7)

Substituting (3.6) into this relation, one finds that the
l.h.s. scales as/&?V~1 for ¢ — 0. Requirement for
the poles ak = 0 to vanish leads to the overdeter-
mined system of 2N 1 equations for the 2(N- 2)
chargesq; andgy (k=3,..., N). The two remain-
ing charges are given by, = —h(h — 1) and g =
—h(h — 1). Solving this system, one obtains the quan-
tized values of the integrals of motion and verifies that
the obtained expressions satisfy three consistency con-
ditions.

Applying Egs. (3.2)—(3.7) one can calculate the
energy of theN-reggeon state for arbitrary complex
vy. Forvy, real, they lead to the results for the energy
En(vp; np, £) obtained before in Ref. [12]. Fow,
complex, they define analytical continuation of the
function Ey(vy;np,£). At N = 2 the differential
equation (3.5) can be solved in terms of Legendre
functions and the resulting expression for the energy
(3.2) coincides with the known expression (3.1). For
N > 3 the analysis is more involved since (3.5) cannot
be solved exactly and one has to rely on a power-series
solutions to (3.5) described at length in Ref. [12]. In
the next section, we summarize the results foe=
3,4,5, 6 reggeon states.

4. Spectral surface

At N = 2, the energy spectrunka(vy;ny) is
described on the complex,-plane by the family of
meromor phic functions (3.1) labelled by a nonnegative
integern;. For N > 3, an analytical expression for
the energy is not available but the valuefy§ can be
calculated for arbitrary complex, using Egs. (3.2)—
(3.7) as follows. Let us consider an arbitrary contour
on the complexv,-plane that starts on the real axis
and terminates at some complgx For given reaby,
the energyEy (vy; np, £) takes a discrete set of real
“physical” values labelled by integet;, and £ =
(€1, ...,€2n—a) (see the left panel in Fig. 1) [11,12].
Calculating the energy along this contour point-by-
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point from Egs. (3.2)—(3.7), one analytically continues
the functionE y (vy; nj, £) to complexyy,.

This procedure allows us to determine the global
properties of the complex curv&y (vy;ny,£) on
the complexvy,-plane. If Exy were a single-valued
function of complexvy, it would resume its original
value after going around arbitrary closed contour on
the v,-plane. This is the case & = 2, Eqg. (3.1),
whereas forN > 3 one finds thatEy (vy,; ny, £) is
a multi-valued function of v,. Namely, Exy has (an
infinite number of) branching points on the complex
plane,v, = vpr i, such thatEy changes its value after
encircling these points. We found however tha

resumes its value if one encircles the branching point

twice. This implies thaEy has square-root cuts

E;\_L, ~ aj £ bg/Vbrk — i,

whereEf, defines the energy on the upper and lower

(4.1)

edges of the cut, respectively. Aside of the branch cuts,

Ex has an infinite number of poles. In agreement with
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Thus, in a complete analogy with quantum mechan-
ics [14], the branching cuts (4.1) arise due to collision
of the energy levels at some complex= v,y away
from the realy,-axis. Since the wave functions of the
two states have to coincide at the branching point [14],
they have to have the same two-dimensional Lorentz
spin, n, = ny, and possess the same quantum num-
bers (quasimomentum, C-parity, Bose symmetry, etc.)
leading to additional selection rules fbrand£’. This
implies that the spectral surface cannot be simply con-
nected and it should consist of (infinite number of) dis-
connected components enumerated by nonnegative in-
tegern; and the quantum numbers just mentioned.

To illustrate our findings, let us consider tive= 3
reggeon states with the Lorentz spip = 0. Their
spectrum is specified by two integets= (¢1, £2).
Assigning the values of these integers to different
energy levels, we follow the convention adopted in
Ref. [12]. The energyEs(vy; 0, £) is a smooth even
function on the reaby-axis (see Fig. 1 on the left). It
approaches the minimal value mjpE3 = 0.24717 at

our expectations, Eq. (2.11), they are located along ,,, — g along the “trajectory” withlY; = 0 and¢, = 2.

imaginary axis atv, = +(n — 1)/2 withn > N + ny,.
Thus, for N > 3 the energyEn(vy; np, £) is a
meromorphic function on the compley-plane with

The charges;z(v,) and gs(vy) take pure imaginary
values along this trajectory, so thgg + g3 = O.
After analytical continuation, the same relation holds

the square-root cuts running between the branching ¢gr arbitrary complexv,, including the branching

points vyr k. Another way to represent the family of
multivalued functions y (vy; ny, £) is to sew together

their branches along the square-root cuts, Eg. (4.1),

and defineEy as a single-valued meromorphic func-
tion on the resulting Riemann surface. Following [17],
we shall call it thespectral surface. Its topology de-
pends on the number of reggeaNs Different sheets
of this surface can be enumerated by integeand<.

Let us consider a particulan;, £)th sheet of the
spectral surface lying over thg,-plane and suppose
that it is sewed with(n),, £))th sheet along the square-
root cut that starts at the branching poim;,. For
real v,, the value of functionEy on these two
sheets defines the “physical” energy of tNereggeon
states Ey (vq; ny, £) andEy (vy; n,, £'), respectively.

If one analytically continues these functions along the
contour that starts at real, and terminates at the
branching pointy, = vy, then at the vicinity of the
branching point the functions behave as (4.1) leading
to

EN (vor; np, £) = En(vpr; 0, £). 4.2)

point (4.2). Therefore, the energy level with =0
and ¢2 =2 could only collide with the levels for
which gz + g3 = 0. As was shown in [12], the
latter condition is satisfied fo¥; = 0 and & =
even positive. Examples of such energy levels with
L2 =2,4,...,14 are shown in Fig. 1. They define a
connected component of thé = 3 spectral surface.

To elucidate analytical properties of the energy, we
used Egs. (3.2)—(3.7) to analytically continue eight
functionsEz(vy; 0, £ = (0, £2)) with 42 =2, 4, ..., 14.
These functions define eight different branches of the
complex curveEs(v,) which can be represented as a
two-dimensional surface i = R* space with the
(vu, E3)-coordinates. The slices of this surface along
Imv, =0 and Rey, = 0 hyperplanes are shown in
Fig. 1 on the left and the right panels, respectively. We
observe that, firstly, the energy has polesigble =
3/2,5/2,7/2,9/2,11/2 and, secondly, different en-
ergy levels collide ativyy = 2.70,3.29,4.73,5.34,
5.74,5.94. At the vicinity of the branching point
the energies of two colliding levels behave E§,
Eq. (4.1). As expected, the poles B are located
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along the imaginaryy-axis ativ, = (n — 1)/2 with
n=4,6,.... This is not the case, however, for the

branching points. It turns out that some of the branch-

ing points are located away from the imaginany
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plex v,-plane. Atv, = 0 it takes the valueEs =
E>(0; 1) = 0 which defines the “physical” ground
state energy for the system af = 3 reggeons [18].
Going over to the imaginany, -axis, one finds thaks

axis and, therefore, they cannot be seen in Fig. 1. For has poles in the lower half-planeiat, =1, 2, . ...

instance, the branches with = 2 and¢> = 4 collide
ativpr = 1.723+ :0.248. In other words, the “ground
state” branch?s = 2, is sewed with thé, = 4 branch
which in its turn is sewed with thé, = 6 branch and

so on. Thus, going around the contour on the com-

plex v,-plane which starts at some real, encircles

We would like to stress that théV = 3 states
with n, = 0 and », = 1 described above define two
different components of the unifyiny = 3 spectral
surface. The reason why we have selected them is
that they contain two special statés(v, = 0; nj, =
1) =0 andE3(vy =0; np =0) = 0.24717, which are

the branching points and returns to the starting point currently considered as solutions for the odderon state

one can reconstruct the energy spectrum ofNhe 3
reggeon states witty = 0 and¢; = even positive.

The fact that the branching pointg, take com-
plex irrational values implies that the contribution of

in QCD with the intercepjgp = 1 — &; E3 [18,19]. As
was shown in Section 2, the poles of the energy in the
lower half-plane Imy, < 0, induce the contribution to
the OPE expansion (1.1) of the twist=h +h = 1+

the corresponding square-root cuts to the integral (2.7) 2iv,. The minimal twistznin corresponds to the pole

scales as ] Q112" |n%2 0] and, therefore, it breaks

closest to the origin. As follows from our analysis,

the OPE expansion (1.1). Although such corrections nmin = 3 for the descendant state withh = 1 4 and

are present in (2.7) for given, and ¢, they cancel

nmin = 4 for the state withz;, = 0. Thus, the leading

against each other in the sum over all states. To seetwist contribution of the two above mentioned odderon

this let us examine two terms in the sum (2.7) cor-
responding to the energy levels collidingigt= vy,.

Each of them is associated with a particular sheet of
the spectral surface. Denoting the energy on the upper

(+) and the lowel—) edges of the square-root cut on
these two sheets a@& (v,) andEx (v;) one finds that
Eli(w,) = E;F(uh). As a consequence, the contour in-

states with the interceptg) = 1 and j) < 1 scales at
large 02 as~ 1/ Q% and~ 1/ 0%, respectively.

5. Anomalousdimensions

To calculate the anomalous dimensions (2.13), one

tegrals around the same cut on the two sheets differ by has to work out the Laurent expansion of the energy

a sign and their sum equals zero. Thus, the contribu-

tion of the cuts to (2.7) cancels completely in the sum
overall N = 3 reggeon states belonging to the same

around its poles, Eq. (2.12). We recall that for the
N-reggeon state the twist-contribution comes from
poles located atv, = (n — 1)/2 withn > N + ny, or

spectral surface. At the same time, if one had retained equivalently: = (n + n;)/2 andi = (n — n) /2.

in (2.7) only contribution of the state with the mini-
mal energyE " —the one defining the leading Regge

Let us first consider the&v = 3 descendant state,
ny = 1. For complexy, its energy,E3 4, coincides

singularity (2.8), the OPE expansion would have been with E2(vy, 1) defined in (3.1). The closest to the
broken. To restore the OPE one has to keep in (2.7) theorigin pole is located atv, = 1 and the corresponding

contribution of subleading Regge singularities.

As another important example, we consider ana-
lytical continuation of theN = 3 reggeon state with
the Lorentz spinn, = 1, the so-called descendant
state [12]. This state hag(v,) = 0 on the realy,-
axis and its energy coincides with the energy of the
N = 2 state,E3q = E2(vp; 1), Eq. (3.1). Both rela-
tions survive the analytical continuation and hold true
for arbitrary complexv,. Thus, in distinction with
the previous case, the energy of this stBtg(vy) is
a single-valued, meromorphic function on the com-

9.(2,C) spins (2.3) are givenby=1+iv, =2 and

h = iv, =1 so that the twist equals =1 + h = 3.
Using (3.1), one finds the expansion of the energy
E3d=E34(h+¢)fore — 0as

1
E3,d(2+€)=g+1—6—(2§'(3)—1)62+....
(5.1)

4 we disagree on this point with Ref. [5], in which it was claimed
thatnmin = 4 for the odderon state with the intercept 1.
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Applying Egs. (2.12) and (2.13), one finds from (5.1) The remaining relations in (5.3) lead to similar ex-
the twist-3 anomalous dimension corresponding to the pressions for higher-twist anomalous dimensions. To

odderon state with the interce =1 as w=j — 1) save space we do not present them here. The follow-
_ > ing comments are in order.

y3(N:3)(j) _ Y% (ﬁ) The first few terms of the Laurent expansion in
] (0 (5.3) can be calculated exactly. The reason for this is

as \* that solutions to the differential equation (3.5) can be
+ (2@ + 1)(;) + (5.2) expanded in powers of and the first few terms can
be obtained in a closed form. The coefficient in front
where the subscript and the superscript indicate the of 1 /¢ in (5.3) equals either 1 (only for even), or 2.
twist and the number of reggeons entering the state, |y the latter case, writing the energy &s(h + €) =
respectively. 2¢~1+ y(h) + O(e) one finds that finite) (¢%)-terms
Let us now consider the/ = 3 states with, =0. have the following remarkable property. It turns out
Their analytical properties are encoded in the spectral that, (4) = 15/4 andy (5) = 53/12 coincide with the
surface shown in Fig. 1. Applying Egs. (3.2)=(3.7), energy of the Heisenber§.(2, R) magnet model of
we calculate the energy at the vicinity of the poles gpin ¢ = 1. Most importantly, the energy spectrum
ath=1/2+iv, =2.3,4,5 and obtain the following  of this model determines the anomalous dimensions

expressions foE3 = E3(h +€) of local compositethree-quark (baryonic) operators
.11 of helicity-3/2 [20,21]. For such operators, integer
E32+e)=€ "+ 575t 1.7021& + -, (h — 3) counts the number of covariant derivatives
15 andy (h) defines their anomalous dimension. Similar
E3(B3+e)=2¢"1+ B~ 1.6172¢+0.719& + - - -, relation holds for higheN between the energy of the
11 N-reggeon statesS( (2, C) Heisenberg spin magnet)
Eéa)(4+ €)= 14+ = —0.6806c— 1.966& + - - -, and anomalous dimensions of-particle operators
12 . . e
b o, 15 (SL(Z, R) H.e|senberg spin magr)et).' Its origin will be
Eé (b+e)=2¢""+ i 3.2187¢+3.430€ + - - -, discussed in a forthcoming publication.
125 Going over to theV > 4 case, we shall concentrate
Eéa)(5 +e)=2¢"14+ =" _20687¢ on the N-reggeon states providing the contribution to
48 the OPE expansion (1.1) of the minimal twisgin. As
+1.0478+ -, before, we shall denote the corresponding anomalous

dimension asf,fﬁz(j).
For N = even we find that the minimal twist equals
+0247E+ - .. (5.3) the number of reggeons involvedyin = N. It cor-

) - responds to the pole of the complex curfg lo-
Here ellipses denoté@(e3) terms and the additional cated ativ, = (N — 1)/2 and n, = 0, or equivalently
superscript was introduced to distinguish between 5 _ j, — N/2. This pole is situated on the same spec-
have the same Lorentz spify =0, so thath =h = that is the state with the minimal energy for regl
31/12;4’ "Z arlld. theEcorrezspi;ndlng t"z"'itg equadsf:_ g s energyE\%" = min,, ¢ Ex (uy; nj,, €), defines the
o f_pptylr;gt_ as. (5'3 ?chart]th( I. 3’_ on? 'mti intercept of theV-reggeon states in the pomeron sec-
rom the first relation in (5.3) that the leading, tWist4 119 451 7@0 _ 0 67416 ande @ = —0.39458,

anomal_ous dlmen3|on corre_spo_ndlng to the odderon The expansion of the energgiy (: + ¢) arounde = 0
state with the intercepip < 1 is given by looks like

_ -\ 2 - \3

-3, .. « 1/a 1/« 2 1

vV 3)(]):_5__(_s> __<_S> EsR+e)="41—-¢—12021’+---,
w 2\w € 2

53
EQ(B+e) =21+ T, 2:4225¢

7\ 4 4 3 7
— 1.0771(“—5) NI (5.4) Eg(3+¢€) = < + >~ Ee —0.238E+ - -. (5.5)
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Applying Egs. (2.12) and (2.13), one obtains the fol-
lowing expressions for the leading, twist-anom-
alous dimension of th&/-reggeon states

. -\ 2
— [07 (07
y{ND () =2% 1 2(—5)
w w

_\4
—13.6168(%) T
w

- _\2 _\3
_ Oy [N o2
= vo(5 ) +2()

w w

_ 4
- 33.23(%> +o-
w

with w = j — 1. We observe that higher order cor-
rections to (5.6) are large indicating that the series

(5.6)

have a finite radius of convergence and its value de-

creases withN. This is in a qualitative agreement
with the fact that the intercept of thé-reggeon states
scales at largeV as|jy — 1| ~ 1/N [12]. Writing
the O(ay)-correction to (5.6) as/o,(w) = e,0;/w
(with n = 2, 3), one finds that,, verifies the condi-
tion ¢, < 2(n — 1) established in [13]. In addition,
you (@) < ny2(w/n) which means that the anomalous
dimension of N-reggeon states is subleading in the
multi-color limit as compared with the anomalous di-
mension ofN /2 BFKL pomerons [7,8].

For N = odd, similar to theN = 3 case, we

consider separately the sectors with the Lorentz spin

n, =0 andny = 1. In the first case, the minimal
twist equalsnmin = (N + 1) and it corresponds to
the pole of the energy atv, = N/2 andnj; = 0,
or equivalentlyr = h = (N + 1)/2. For instance, at
N =5 the expansion of the ener@y (k + ¢) and the
anomalous dimension look like

3 101
Es5(3 =24 - —"¢-01136&+ -
53+ =Ct5 216 tee
- -\ 2 - \3
(N=5) , . as 1o 1/ a
3= 4 (=) (=
=9 j) w+2<w) 8(w)
=\ 4
—13.032(%) . (5.7)
w
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In the second case, fa¥ = odd andn;, = 1, the
minimal twist is smallemmi, = N. It corresponds to
the pole of the energ¥y ativ, = (N — 1)/2, or
equivalentlys = (N + 1)/2 andh = (N — 1)/2. At
N =5 the expansion of the enerdy (i + €) looks
like

3+.6
Esg(3+¢) = ’;‘f +1.36180— 0.4349¢
€
—0.315& + - - -,
_ 3+.6a 5\ 2
V=9 (j) = %‘f% + 3.56524(%)
_ .3 _ .4
+ 1.8743(%> —11.219(%> 4.
@ w

(5.8)
As in the N = 3 case, this reggeon state is descen-
dant [12], that is its energy equals the energy of the
N = 4 state withn;, = 1. The pole (5.8) belongs to
the same spectral surface as thie= 5 ground state,
ES” (nj, = 1) = 0, which has the quantum numbers of
the odderon and intercept equal to unity. The second
relation in (5.8) defines the leading, twist-5 anomalous
dimension of this state.

6. Conclusions

In this Letter, we performed the OPE analysis of
the contribution of N-reggeon compound states to
the moments of the structure functidn(j, Q2) for
j — 1 and calculated the anomalous dimensions of
the leading twist contribution in multi-color QCD.
To this end, we analytically continued the energy
of the N-reggeon statesZy from the “physical”
region of parameters (real,-axis) to complexv,
and established the relation between the anomalous
dimensions forj — 1 and the Laurent expansion
of Ey around its poles. AtV = 2 the energy is a
meromorphic function on the complex-plane [4]
while for N > 3 analytical properties of the energy
Ex are changed dramatically. Namely, we found that,
in agreement with previous findings [7,8], the energy

The pole (5.7) is located on the same spectral surfaceEN is a multi-valued function on the complex,-

as the physical ground state in this secl@é‘?” (np =

plane. The reason for this is that different energy

0) = 0.12751. This state has the quantum numbers of |evels in the spectrum of th&¥-reggeon states collide

the odderon. It has the intercept-1a, £ which is
smaller then 1 and its leading twist equals 6.

after analytical continuation to compley and, as a
consequence, their energies develop square-root cuts.
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