286 research outputs found

    On the Dynamics of solitons in the nonlinear Schroedinger equation

    Full text link
    We study the behavior of the soliton solutions of the equation i((\partial{\psi})/(\partialt))=-(1/(2m)){\Delta}{\psi}+(1/2)W_{{\epsilon}}'({\psi})+V(x){\psi} where W_{{\epsilon}}' is a suitable nonlinear term which is singular for {\epsilon}=0. We use the "strong" nonlinearity to obtain results on existence, shape, stability and dynamics of the soliton. The main result of this paper (Theorem 1) shows that for {\epsilon}\to0 the orbit of our soliton approaches the orbit of a classical particle in a potential V(x).Comment: 29 page

    Hylomorphic solitons in the nonlinear Klein-Gordon equation

    Full text link
    Roughly speaking a solitary wave is a solution of a field equation whose energy travels as a localised packet and which preserves this localisation in time. A soliton is a solitary wave which exhibits some strong form of stability so that it has a particle-like behaviour. In this paper we show a new mechanism which might produce solitary waves and solitons for a large class of equations, such as the nonlinear Klein-Gordon equation. We show that the existence of these kind of solitons, that we have called \emph{hylomorphic} solitons, depends on a suitable energy/charge ratio. We show a variational method that allows to prove the existence of hylomorphic solitons and that turns out to be very useful for numerical applications. Moreover we introduce some classes of nonlinearities which admit hylomorphic solitons of different shapes and with different relations between charge, energy and frequency.Comment: 23 page

    Compression and diffusion: a joint approach to detect complexity

    Full text link
    The adoption of the Kolmogorov-Sinai (KS) entropy is becoming a popular research tool among physicists, especially when applied to a dynamical system fitting the conditions of validity of the Pesin theorem. The study of time series that are a manifestation of system dynamics whose rules are either unknown or too complex for a mathematical treatment, is still a challenge since the KS entropy is not computable, in general, in that case. Here we present a plan of action based on the joint action of two procedures, both related to the KS entropy, but compatible with computer implementation through fast and efficient programs. The former procedure, called Compression Algorithm Sensitive To Regularity (CASToRe), establishes the amount of order by the numerical evaluation of algorithmic compressibility. The latter, called Complex Analysis of Sequences via Scaling AND Randomness Assessment (CASSANDRA), establishes the complexity degree through the numerical evaluation of the strength of an anomalous effect. This is the departure, of the diffusion process generated by the observed fluctuations, from ordinary Brownian motion. The CASSANDRA algorithm shares with CASToRe a connection with the Kolmogorov complexity. This makes both algorithms especially suitable to study the transition from dynamics to thermodynamics, and the case of non-stationary time series as well. The benefit of the joint action of these two methods is proven by the analysis of artificial sequences with the same main properties as the real time series to which the joint use of these two methods will be applied in future research work.Comment: 27 pages, 9 figure

    Displacement energy of unit disk cotangent bundles

    Full text link
    We give an upper bound of a Hamiltonian displacement energy of a unit disk cotangent bundle DMD^*M in a cotangent bundle TMT^*M, when the base manifold MM is an open Riemannian manifold. Our main result is that the displacement energy is not greater than Cr(M)C r(M), where r(M)r(M) is the inner radius of MM, and CC is a dimensional constant. As an immediate application, we study symplectic embedding problems of unit disk cotangent bundles. Moreover, combined with results in symplectic geometry, our main result shows the existence of short periodic billiard trajectories and short geodesic loops.Comment: Title slightly changed. Close to the version published online in Math Zei

    Convex domains of Finsler and Riemannian manifolds

    Full text link
    A detailed study of the notions of convexity for a hypersurface in a Finsler manifold is carried out. In particular, the infinitesimal and local notions of convexity are shown to be equivalent. Our approach differs from Bishop's one in his classical result (Bishop, Indiana Univ Math J 24:169-172, 1974) for the Riemannian case. Ours not only can be extended to the Finsler setting but it also reduces the typical requirements of differentiability for the metric and it yields consequences on the multiplicity of connecting geodesics in the convex domain defined by the hypersurface.Comment: 22 pages, AMSLaTex. Typos corrected, references update

    Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary

    Full text link
    Let (M,g) be a smooth compact, n dimensional Riemannian manifold, n=3,4 with smooth n-1 dimensional boundary. We search the positive solutions of the singularly perturbed Klein Gordon Maxwell Proca system with homogeneous Neumann boundary conditions or for the singularly perturbed Klein Gordon Maxwell system with mixed Dirichlet Neumann homogeneous boundary conditions. We prove that stable critical points of the mean curvature of the boundary generates solutions when the perturbation parameter is sufficiently small.Comment: arXiv admin note: text overlap with arXiv:1410.884

    Calibrated Surfaces and Supersymmetric Wilson Loops

    Full text link
    We study the dual gravity description of supersymmetric Wilson loops whose expectation value is unity. They are described by calibrated surfaces that end on the boundary of anti de-Sitter space and are pseudo-holomorphic with respect to an almost complex structure on an eight-dimensional slice of AdS_5 x S^5. The regularized area of these surfaces vanishes, in agreement with field theory non-renormalization theorems for the corresponding operators.Comment: 28 pages, 2 figure

    The tale of two centres

    Full text link
    We study motion in the field of two fixed centres described by a family of Einstein-dilaton-Maxwell theories. Transitions between regular and chaotic motion are observed as the dilaton coupling is varied.Comment: 20 pages, RevTeX, 7 figures included, TeX format change

    Relativistic point dynamics and Einstein formula as a property of localized solutions of a nonlinear Klein-Gordon equation

    Full text link
    Einstein's relation E=Mc^2 between the energy E and the mass M is the cornerstone of the relativity theory. This relation is often derived in a context of the relativistic theory for closed systems which do not accelerate. By contrast, Newtonian approach to the mass is based on an accelerated motion. We study here a particular neoclassical field model of a particle governed by a nonlinear Klein-Gordon (KG) field equation. We prove that if a solution to the nonlinear KG equation and its energy density concentrate at a trajectory, then this trajectory and the energy must satisfy the relativistic version of Newton's law with the mass satisfying Einstein's relation. Therefore the internal energy of a localized wave affects its acceleration in an external field as the inertial mass does in Newtonian mechanics. We demonstrate that the "concentration" assumptions hold for a wide class of rectilinear accelerating motions
    corecore