422 research outputs found

    Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions

    Get PDF
    Significance: Two-dimensional (2-D) fully convolutional neural networks have been shown capable of producing maps of sO2 from 2-D simulated images of simple tissue models. However, their potential to produce accurate estimates in vivo is uncertain as they are limited by the 2-D nature of the training data when the problem is inherently three-dimensional (3-D), and they have not been tested with realistic images. Aim: To demonstrate the capability of deep neural networks to process whole 3-D images and output 3-D maps of vascular sO2 from realistic tissue models/images. Approach: Two separate fully convolutional neural networks were trained to produce 3-D maps of vascular blood oxygen saturation and vessel positions from multiwavelength simulated images of tissue models. Results: The mean of the absolute difference between the true mean vessel sO2 and the network output for 40 examples was 4.4% and the standard deviation was 4.5%. Conclusions: 3-D fully convolutional networks were shown capable of producing accurate sO2 maps using the full extent of spatial information contained within 3-D images generated under conditions mimicking real imaging scenarios. We demonstrate that networks can cope with some of the confounding effects present in real images such as limited-view artifacts and have the potential to produce accurate estimates in vivo

    Perceptual adaptation by normally hearing listeners to a simulated "hole" in hearing

    Get PDF
    Simulations of cochlear implants have demonstrated that the deleterious effects of a frequency misalignment between analysis bands and characteristic frequencies at basally shifted simulated electrode locations are significantly reduced with training. However, a distortion of frequency-to-place mapping may also arise due to a region of dysfunctional neurons that creates a "hole" in the tonotopic representation. This study simulated a 10 mm hole in the mid-frequency region. Noise-band processors were created with six output bands (three apical and three basal to the hole). The spectral information that would have been represented in the hole was either dropped or reassigned to bands on either side. Such reassignment preserves information but warps the place code, which may in itself impair performance. Normally hearing subjects received three hours of training in two reassignment conditions. Speech recognition improved considerably with training. Scores were much lower in a baseline (untrained) condition where information from the hole region was dropped. A second group of subjects trained in this dropped condition did show some improvement; however, scores after training were significantly lower than in the reassignment conditions. These results are consistent with the view that speech processors should present the most informative frequency range irrespective of frequency misalignment. 0 2006 Acoustical Society of America

    Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Get PDF
    In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (>75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (<1%) of the total OA mass, which may be the result of the neutralized aerosol at the site or because only a small number of organosulfates were quantified. The low contribution of organosulfates to total OA suggests that other mechanisms, e.g. NO_x enhancement of oxidant levels, are likely responsible for the majority of the anthropogenic enhancement of biogenic secondary organic aerosol observed at this site

    Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2×1021 Protons on Target

    Get PDF
    The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of 14.7(7.6)×1020 protons on target in the neutrino (antineutrino) mode, 89 νe candidates and seven anti-νe candidates are observed, while 67.5 and 9.0 are expected for δCP=0 and normal mass ordering. The obtained 2σ confidence interval for the CP-violating phase, δCP, does not include the CP-conserving cases (δCP=0, π). The best-fit values of other parameters are sin2θ23=0.526-0.036+0.032 and Δm322=2.463-0.070+0.071×10-3 eV2/c4

    T2K measurements of muon neutrino and antineutrino disappearance using 3.13×1021 protons on target

    Get PDF
    We report measurements by the T2K experiment of the parameters θ23 and Δm322, which govern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNS neutrino oscillation model at T2K\u27s neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to measure these parameters separately for neutrino and antineutrino oscillations. Data taken from 1.49×1021 protons on target (POT) in neutrino mode and 1.64×1021 POT in antineutrino mode are used. The best-fit values obtained by T2K were sin2(θ23)=0.51-0.07+0.06(0.43-0.05+0.21) and Δm322=2.47-0.09+0.08(2.50-0.13+0.18)×10-3 eV2/c4 for neutrinos (antineutrinos). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-flavor neutrino oscillation model where the sine of the mixing angle is allowed to take nonphysical values larger than 1 is also performed to check the consistency of our data with the three-flavor model. Our data were found to be consistent with a physical value for the mixing angle

    Improved constraints on neutrino mixing from the T2K experiment with 3.13×1021 protons on target

    Get PDF
    The T2K experiment reports updated measurements of neutrino and antineutrino oscillations using both appearance and disappearance channels. This result comes from an exposure of 14.9(16.4)×1020 protons on target in neutrino (antineutrino) mode. Significant improvements have been made to the neutrino interaction model and far detector reconstruction. An extensive set of simulated data studies have also been performed to quantify the effect interaction model uncertainties have on the T2K oscillation parameter sensitivity. T2K performs multiple oscillation analyses that present both frequentist and Bayesian intervals for the Pontecorvo-Maki-Nakagawa-Sakata parameters. For fits including a constraint on sin2θ13 from reactor data and assuming normal mass ordering T2K measures sin2θ23=0.53-0.04+0.03 and Δm322=(2.45±0.07)×10-3 eV2 c-4. The Bayesian analyses show a weak preference for normal mass ordering (89% posterior probability) and the upper sin2θ23 octant (80% posterior probability), with a uniform prior probability assumed in both cases. The T2K data exclude CP conservation in neutrino oscillations at the 2σ level
    corecore