4 research outputs found
A versatile cancer cell trapping and 1D migration assay in a microfluidic device
Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine. Published under license by AIP Publishing
Design, fabrication and optimization of a multifunctional microfluidic platform for single-cell analyses.
La manipulación celular es clave en el desarrollo de la investigación y aplicaciones
para diagnóstico clínico. Hoy en día, es bien conocido que las células
individuales, incluso aquellas con la misma apariencia, pueden mostrar diferentes
fenotipos. Estas disparidades hacen que cada célula, aún encontrándose
en las mismas condiciones, responda de manera diferente frente a un mismo
estímulo. Por lo tanto, el estudio celular a nivel individual proporciona información
más precisa que los datos promediados obtenidos tradicionalmente
en estudios poblacionales, abriendo nuevas oportunidades en el desarrollo de
nuevos fármacos y en la medicina personalizada.
La microfluídica se ha constituido como una tecnología con gran capacidad
para investigar la complejidad inherente de los sistemas celulares. Los
canales microfluídicos poseen dimensiones en el rango de las decenas a cientos
de micras siendo comparables con el tamaño de una célula. Esto permite
la realización de numerosos estudios biomédicos con gran resolución espacial
y temporal. Además, el desarrollo de plataformas microfluídicas cuenta
con numerosas ventajas inherentes a su escala micrométrica como son: la
minimización en el consumo de reactivos y producción de desechos, su alta
sensibilidad y rápida respuesta o, su alta capacidad de integración. Todo ello
se traduce en gran versatilidad a bajo coste.
Dentro de este marco, esta tesis presenta una aproximación multidisciplinar
para el desarrollo de dispositivos microfluídicos capaces de capturar,
tratar y/o analizar células de forma individual con el consiguiente valor añadido.
Para ello, los diferentes dispositivos microfluídicos han sido diseñados utilizando
un programa de diseño asistido por ordenador. La fabricación y
desarrollo de los mismos se ha llevado a cabo mediante técnicas de microfabricación
como fotolitografía o micromoldeo de polímeros. Para su
posterior caracterización y validación estructural, se ha utilizado tanto la
perfilometría como diversas técnicas de microscopía. Además, se ha estudiado
la dinámica de fluidos dentro de la plataforma desarrollada de manera
teórica, mediante simulaciones computacionales, así como de forma empírica.
Finalmente, la versatilidad de los dispositivos se ha validado llevando a cabo
ensayos biológicos entre los que cabe destacar: estudios de viabilidad celular,
citotoxicidad y migración celular tanto de células sanas como cancerígenas.
Como resultado de este trabajo, se presenta una plataforma microfluídica
de alto rendimiento y multifuncional de bajo coste. En concreto, el mecanismo
de atrapamiento utilizado se basa en trampas hidrodinámicas con un
manejo simple y mediante el control del fenómeno de co-flujo laminar. Gracias
a su naturaleza modular, diferentes tipos de microestructuras pueden
ser adaptadas a la plataforma principal permitiendo, por ejemplo, el análisis
de la migración celular o de comunicaciones intercelulares. En conclusión,
la plataforma microfluídica desarrollada permitirá una mejor comprensión de
procesos biológicos fundamentales proporcionando microambientes celulares
altamente adaptables y controlables.Cell handling is essential for research and application development in clinical
diagnostics. In numerous biological assays thousands of cells are cultured
without considering that the interaction between them may interfere in the
resulting data. Nowadays, it is well known that individual cells, even those
with identical appearance may display different phenotypes. These disparities
make individual cells have different responses to equal stimulus in the same
conditions. Therefore, single-cell studies provide more precise information,
than average responses traditionally obtained from cell populations, and open
new opportunities for drug discovery and personalized medicine.
Microfluidics has emerged as a powerful enabling technology to investigate
the natural complexity of cellular systems. Microfluidic channels have
dimensions ranging from tens to hundreds of microns which are comparable
to the size of a cell. This allows the realization of large numbers of biomedical
studies with high spatial and temporal resolution. In addition, the microfluidic
platforms have numerous advantages inherent to the micrometer scale, such
as: minimized reagent consumption and waste production, high sensitivity
and fast response or high integration capabilities. Overall, this is translated
to versatile and cost-effective solutions.
In this framework, this thesis presents a multidisciplinary approach for the
development of microfluidic platforms capable of capturing, treating and/or
analyzing single-cells with the corresponding added value. In order to achieve
this, different microfluidic platforms have been designed using computer
aided design (CAD) software. The manufacture and development of these
microdevices have been carried out by means of microfabrication techniques
such as photolithography and polymer micromolding processes. The fabricated
microfluidic platforms have been structurally characterized and validated
by means of profilometry and various microscopic techniques. In addition,
theoretical (computational fluid dynamics simulations) and experimental
fluid dynamics characterizations inside the microfluidic platform have been
performed. Finally, the versatility of the devices has been highlighted through
several cell-based assays including cell viability, cytotoxicity and cell migration
studies accounting for healthy and cancer cells.
As a result of this work, a multifunctional, low cost and high-throughput
microfluidic platform has been devised. In particular, the trapping mechanism
relies on hydrodynamic traps and the accurate and simple handling is based on
the control of the laminar co-flow phenomenon. Thanks to its modular nature,
different microstructures can be easily coupled to the main platform enabling
cell migration and co-culture analyses. Overall, the developed microfluidic
platform will facilitate a better understanding of key biological processes by
providing well-controlled and versatile microenvironments
Design, fabrication and optimization of a multifunctional microfluidic platform for single-cell analyses.
La manipulación celular es clave en el desarrollo de la investigación y aplicaciones
para diagnóstico clínico. Hoy en día, es bien conocido que las células
individuales, incluso aquellas con la misma apariencia, pueden mostrar diferentes
fenotipos. Estas disparidades hacen que cada célula, aún encontrándose
en las mismas condiciones, responda de manera diferente frente a un mismo
estímulo. Por lo tanto, el estudio celular a nivel individual proporciona información
más precisa que los datos promediados obtenidos tradicionalmente
en estudios poblacionales, abriendo nuevas oportunidades en el desarrollo de
nuevos fármacos y en la medicina personalizada.
La microfluídica se ha constituido como una tecnología con gran capacidad
para investigar la complejidad inherente de los sistemas celulares. Los
canales microfluídicos poseen dimensiones en el rango de las decenas a cientos
de micras siendo comparables con el tamaño de una célula. Esto permite
la realización de numerosos estudios biomédicos con gran resolución espacial
y temporal. Además, el desarrollo de plataformas microfluídicas cuenta
con numerosas ventajas inherentes a su escala micrométrica como son: la
minimización en el consumo de reactivos y producción de desechos, su alta
sensibilidad y rápida respuesta o, su alta capacidad de integración. Todo ello
se traduce en gran versatilidad a bajo coste.
Dentro de este marco, esta tesis presenta una aproximación multidisciplinar
para el desarrollo de dispositivos microfluídicos capaces de capturar,
tratar y/o analizar células de forma individual con el consiguiente valor añadido.
Para ello, los diferentes dispositivos microfluídicos han sido diseñados utilizando
un programa de diseño asistido por ordenador. La fabricación y
desarrollo de los mismos se ha llevado a cabo mediante técnicas de microfabricación
como fotolitografía o micromoldeo de polímeros. Para su
posterior caracterización y validación estructural, se ha utilizado tanto la
perfilometría como diversas técnicas de microscopía. Además, se ha estudiado
la dinámica de fluidos dentro de la plataforma desarrollada de manera
teórica, mediante simulaciones computacionales, así como de forma empírica.
Finalmente, la versatilidad de los dispositivos se ha validado llevando a cabo
ensayos biológicos entre los que cabe destacar: estudios de viabilidad celular,
citotoxicidad y migración celular tanto de células sanas como cancerígenas.
Como resultado de este trabajo, se presenta una plataforma microfluídica
de alto rendimiento y multifuncional de bajo coste. En concreto, el mecanismo
de atrapamiento utilizado se basa en trampas hidrodinámicas con un
manejo simple y mediante el control del fenómeno de co-flujo laminar. Gracias
a su naturaleza modular, diferentes tipos de microestructuras pueden
ser adaptadas a la plataforma principal permitiendo, por ejemplo, el análisis
de la migración celular o de comunicaciones intercelulares. En conclusión,
la plataforma microfluídica desarrollada permitirá una mejor comprensión de
procesos biológicos fundamentales proporcionando microambientes celulares
altamente adaptables y controlables.Cell handling is essential for research and application development in clinical
diagnostics. In numerous biological assays thousands of cells are cultured
without considering that the interaction between them may interfere in the
resulting data. Nowadays, it is well known that individual cells, even those
with identical appearance may display different phenotypes. These disparities
make individual cells have different responses to equal stimulus in the same
conditions. Therefore, single-cell studies provide more precise information,
than average responses traditionally obtained from cell populations, and open
new opportunities for drug discovery and personalized medicine.
Microfluidics has emerged as a powerful enabling technology to investigate
the natural complexity of cellular systems. Microfluidic channels have
dimensions ranging from tens to hundreds of microns which are comparable
to the size of a cell. This allows the realization of large numbers of biomedical
studies with high spatial and temporal resolution. In addition, the microfluidic
platforms have numerous advantages inherent to the micrometer scale, such
as: minimized reagent consumption and waste production, high sensitivity
and fast response or high integration capabilities. Overall, this is translated
to versatile and cost-effective solutions.
In this framework, this thesis presents a multidisciplinary approach for the
development of microfluidic platforms capable of capturing, treating and/or
analyzing single-cells with the corresponding added value. In order to achieve
this, different microfluidic platforms have been designed using computer
aided design (CAD) software. The manufacture and development of these
microdevices have been carried out by means of microfabrication techniques
such as photolithography and polymer micromolding processes. The fabricated
microfluidic platforms have been structurally characterized and validated
by means of profilometry and various microscopic techniques. In addition,
theoretical (computational fluid dynamics simulations) and experimental
fluid dynamics characterizations inside the microfluidic platform have been
performed. Finally, the versatility of the devices has been highlighted through
several cell-based assays including cell viability, cytotoxicity and cell migration
studies accounting for healthy and cancer cells.
As a result of this work, a multifunctional, low cost and high-throughput
microfluidic platform has been devised. In particular, the trapping mechanism
relies on hydrodynamic traps and the accurate and simple handling is based on
the control of the laminar co-flow phenomenon. Thanks to its modular nature,
different microstructures can be easily coupled to the main platform enabling
cell migration and co-culture analyses. Overall, the developed microfluidic
platform will facilitate a better understanding of key biological processes by
providing well-controlled and versatile microenvironments
A versatile cancer cell trapping and 1D migration assay in a microfluidic device
Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine. Published under license by AIP Publishing