197 research outputs found

    Relationship between Ethylene and the Growth of Ficus sycomorus

    Full text link

    Characterization of Cyclin E Expression in Multiple Myeloma and Its Functional Role in Seliciclib-Induced Apoptotic Cell Death

    Get PDF
    Multiple Myeloma (MM) is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator – cyclin dependent kinase (CDK). Genomic instability was reported to be affected by over expression of another CDK regulator - cyclin E (CCNE). This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs). Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion–mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy

    Can Climate Change Mitigation Policy Benefit the Israeli Economy? A Computable General Equilibrium Analysis

    Full text link
    The growing attention to global warming due to greenhouse gas (GHG) emissions in the process of fossil fuel-based energy production is expressed in the Kyoto Protocol, which prescribes, on average, a 7 percent reduction in GHG emissions for developed countries. Although Israel was not included in the list of the obligated countries ('Annex A'), it should consider the economic implications of participating in the emission reduction effort, as such a commitment becomes highly feasible following the Bali roadmap which oblige a successor to the Kyoto Protocol to launch negotiations including all parties to the UNFCCC on a future framework, stressing the role of cooperative action and of common though differentiated responsibility. This study aimed to quantify the economy-wide consequences for Israel of meeting the targets of the Kyoto Protocol, employing a Computable General Equilibrium (CGE) model of the Israeli economy. Initially, to this end, we constructed a social accounting matrix (SAM) to serve as a benchmark by combining physical energy and emission data and economic data from various sources. The efficacy of decentralized economic incentives for CO2 emission reduction, such as carbon taxes on emissions and auctioned emission permits, was assessed in terms of their impact on economic welfare. In addition, we tested for the ensuing so-called double dividend. Two distinct cases were analyzed. In the first one, we tested a revenue-neutral environmental policy which proportionally cut pre-existing taxes. Labour supply was assumed to be exogenously fixed. The results showed that, although significant CO2 emission reduction can be achieved, followed by modest economic cost, no double dividend could be discerned. Next, in order to check for the employment double dividend (lower CO2 emissions and lower unemployment), we introduced labor market imperfections, with the aim of cutting income tax. The results of this case indicate that an employment double dividend is possible under a rather standard set of assumptions. Moreover, for higher substitutability between the energy composite input and the labor-capital one, an even 'strong' form of double dividend can be obtained. We performed several sensitivity analyses with respect to the modeled production function, which re-confirmed the finding that higher substitution possibilities lead to lower welfare costs 3 associated with a given emission reduction target. We qualify this general result by also showing that the opposite holds when the emission tax rate is held constant, rather than reduced. It may be concluded on the basis of this analysis that a double dividend may be an achievable goal under a GHG emission reduction policy in the case of economies such as Israel. The CGE approach applied in this research is adopted for the first time to the Israeli economy and should contribute to better informed debate on environmental policy in Israel

    Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables

    Get PDF
    It is known that in developing countries, a large quantity of fruit and vegetable losses results at postharvest and processing stages due to poor or scarce storage technology and mishandling during harvest. The use of new and innovative technologies for reducing postharvest losses is a requirement that has not been fully covered. The use of edible coatings (mainly based on biopolymers) as a postharvest technique for agricultural commodities has offered biodegradable alternatives in order to solve problems (e.g., microbiological growth) during produce storage. However, biopolymer-based coatings can present some disadvantages such as: poor mechanical properties (e.g., lipids) or poor water vapor barrier properties (e.g., polysaccharides), thus requiring the development of new alternatives to solve these drawbacks. Recently, nanotechnology has emerged as a promising tool in the food processing industry, providing new insights about postharvest technologies on produce storage. Nanotechnological approaches can contribute through the design of functional packing materials with lower amounts of bioactive ingredients, better gas and mechanical properties and with reduced impact on the sensorial qualities of the fruits and vegetables. This work reviews some of the main factors involved in postharvest losses and new technologies for extension of postharvest storage of fruits and vegetables, focused on perspective uses of edible coatings and nano-laminate coatings.María L. Flores-López thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant Number: 215499/310847). Miguel A. Cerqueira (SFRH/BPD/72753/2010) is recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). The authors also thank the FCT Strategic Project of UID/ BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the project ‘‘BioInd Biotechnology and Bioengineering for improved Industrial and AgroFood processes,’’ REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico – FUNCAP, CE Brazil (CI10080-00055.01.00/13)

    Economic Impacts of Climate Change on Vegetative Agriculture Markets in Israel

    Get PDF
    We integrate the combined agricultural production effects of forecasted changes in CO2, temperature and precipitation into a multi-regional, country-wide partial equilibrium positive mathematical programming model. By conducting a meta-analysis of 2103 experimental observations from 259 agronomic studies we estimate production functions relating yields to CO2 concentration and temperature for 55 crops. We apply the model to simulate climate change in Israel based on 15 agricultural production regions. Downscaled projections for CO2 concentration, temperature and precipitation were derived from three general circulation models and four representative concentration pathways, showing temperature increase and precipitation decline throughout most of the county during the future periods 2041–2060 and 2061–2080. Given the constrained regional freshwater and non-freshwater quotas, farmers will adapt by partial abandonment of agriculture lands, increasing focus on crops grown in controlled environments at the expense of open-field and rain-fed crops. Both agricultural production and prices decline, leading to reduced agricultural revenues; nevertheless, production costs reduce at a larger extent such that farming profits increase. As total consumer surplus also augments, overall social welfare rises. We find that this outcome is reversed if the positive fertilization effects of increased CO2 concentrations are overlooked
    corecore