1,673 research outputs found

    A Novel, Contactless, Portable “Spot-Check” Device Accurately Measures Respiratory Rate

    Get PDF
    Respiratory rate (RR) is an important vital sign used in the assessment of acutely ill patients. It is also used as to predict serious deterioration in a patient's clinical condition. Convenient electronic devices exist for measurement of pulse, blood pressure, oxygen saturation and temperature. Although devices which measure RR exist, none has entered everyday clinical practice. We developed a contactless portable respiratory rate monitor (CPRM) and evaluated the agreement in respiratory rate measurements between existing methods and our new device. The CPRM uses thermal anemometry to measure breath signals during inspiration and expiration. RR data were collected from 52 healthy adult volunteers using respiratory inductance plethysmography (RIP) bands (established contact method), visual counting of chest movements (established non-contact method) and the CPRM (new method), simultaneously. Two differently shaped funnel attachments were evaluated for each volunteer. Data showed good agreement between measurements from the CPRM and the gold standard RIP, with intra-class correlation coefficient (ICC): 0.836, mean difference 0.46 and 95% limits of agreement of -5.90 to 6.83. When separate air inlet funnels of the CPRM were analysed, stronger agreement was seen with an elliptical air inlet; ICC 0.908, mean difference 0.37 with 95% limits of agreement -4.35 to 5.08. A contactless device for accurately and quickly measuring respiratory rate will be an important triage tool in the clinical assessment of patients. More testing is needed to explore the reasons for outlying measurements and to evaluate in the clinical setting

    Bio-inspired all-optical artificial neuromast for 2D flow sensing

    Get PDF
    We present the design, fabrication and testing of a novel all-optical 2D flow velocity sensor, inspired by a fish lateral line neuromast. This artificial neuromast consists of optical fibres inscribed with Bragg gratings supporting a fluid force recipient sphere. Its dynamic response is modelled based on the Stokes solution for unsteady flow around a sphere and found to agree with experimental results. Tuneable mechanical resonance is predicted, allowing a deconvolution scheme to accurately retrieve fluid flow speed and direction from sensor readings. The optical artificial neuromast achieves a low frequency threshold flow sensing of 5 mm s(-1) and 5 mu m s(-1) at resonance, with a typical linear dynamic range of 38 dB at 100 Hz sampling. Furthermore, the optical artificial neuromast is shown to determine flow direction within a few degrees

    Phase Field Model for Three-Dimensional Dendritic Growth with Fluid Flow

    Full text link
    We study the effect of fluid flow on three-dimensional (3D) dendrite growth using a phase-field model on an adaptive finite element grid. In order to simulate 3D fluid flow, we use an averaging method for the flow problem coupled to the phase-field method and the Semi-Implicit Approximated Projection Method (SIAPM). We describe a parallel implementation for the algorithm, using Charm++ FEM framework, and demonstrate its efficiency. We introduce an improved method for extracting dendrite tip position and tip radius, facilitating accurate comparison to theory. We benchmark our results for two-dimensional (2D) dendrite growth with solvability theory and previous results, finding them to be in good agreement. The physics of dendritic growth with fluid flow in three dimensions is very different from that in two dimensions, and we discuss the origin of this behavior

    Efficient Computation of Dendritic Microstructures using Adaptive Mesh Refinement

    Full text link
    We study dendritic microstructure evolution using an adaptive grid, finite element method applied to a phase-field model. The computational complexity of our algorithm, per unit time, scales linearly with system size, rather than the quadratic variation given by standard uniform mesh schemes. Time-dependent calculations in two dimensions are in good agreement with the predictions of solvability theory, and can be extended to three dimensions and small undercoolingsComment: typo in a parameter of Fig. 1; 4 pages, 4 postscript figures, in LateX, (revtex

    Novel Approaches to Detect Serum Biomarkers for Clinical Response to Interferon-β Treatment in Multiple Sclerosis

    Get PDF
    Interferon beta (IFNβ) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNβ. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1α, between clinical responders and non-responders, despite the association of these proteins with IFNβ treatment in MS

    Crossover Scaling in Dendritic Evolution at Low Undercooling

    Full text link
    We examine scaling in two-dimensional simulations of dendritic growth at low undercooling, as well as in three-dimensional pivalic acid dendrites grown on NASA's USMP-4 Isothermal Dendritic Growth Experiment. We report new results on self-similar evolution in both the experiments and simulations. We find that the time dependent scaling of our low undercooling simulations displays a cross-over scaling from a regime different than that characterizing Laplacian growth to steady-state growth

    A coronary heart disease risk model for predicting the effect of potent antiretroviral therapy in HIV-1 infected men

    Get PDF
    Background Many HIV-infected patients on highly active antiretroviral therapy (HAART) experience metabolic complications including dyslipidaemia and insulin resistance, which may increase their coronary heart disease (CHD) risk. We developed a prognostic model for CHD tailored to the changes in risk factors observed in patients starting HAART. Methods Data from five cohort studies (British Regional Heart Study, Caerphilly and Speedwell Studies, Framingham Offspring Study, Whitehall II) on 13 100 men aged 40-70 and 114 443 years of follow up were used. CHD was defined as myocardial infarction or death from CHD. Model fit was assessed using the Akaike Information Criterion; generalizability across cohorts was examined using internal-external cross-validation. Results A parametric model based on the Gompertz distribution generalized best. Variables included in the model were systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, diabetes mellitus, body mass index and smoking status. Compared with patients not on HAART, the estimated CHD hazard ratio (HR) for patients on HAART was 1.46 (95% CI 1.15-1.86) for moderate and 2.48 (95% CI 1.76-3.51) for severe metabolic complications. Conclusions The change in the risk of CHD in HIV-infected men starting HAART can be estimated based on typical changes in risk factors, assuming that HRs estimated using data from non-infected men are applicable to HIV-infected men. Based on this model the risk of CHD is likely to increase, but increases may often be modest, and could be offset by lifestyle change
    corecore