57 research outputs found
Recommended from our members
Environmentally Induced Epigenetic Transgenerational Inheritance and the Weismann Barrier: The Dawn of Neo-Lamarckian Theory
For the past 120 years, the Weismann barrier and associated germ plasm theory of heredity have been a doctrine that has impacted evolutionary biology and our concepts of inheritance through the germline. Although August Weismann in his 1872 book was correct that the sperm and egg were the only cells to transmit molecular information to the subsequent generation, the concept that somatic cells do not impact the germline (i.e., the Weismann barrier) is incorrect. However, the doctrine or dogma of the Weismann barrier still influences many scientific fields and topics. The discovery of epigenetics, and more recently environmentally induced epigenetic transgenerational inheritance of phenotypic variation and pathology, have had significant impacts on evolution theory and medicine today. Environmental epigenetics and the concept of epigenetic transgenerational inheritance refute aspects of the Weismann barrier and require a re-evaluation of both inheritance theory and evolution theory
Recommended from our members
Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance
Background: Environmentally induced epigenetic transgenerational inheritance of pathology and phenotypic variation has been demonstrated in all organisms investigated from plants to humans. This non-genetic form of inheritance is mediated through epigenetic alterations in the sperm and/or egg to subsequent generations. Although the combined regulation of differential DNA methylated regions (DMR), non-coding RNA (ncRNA), and differential histone retention (DHR) have been shown to occur, the integration of these different epigenetic processes remains to be elucidated. The current study was designed to examine the integration of the different epigenetic processes. Results: A rat model of transiently exposed F0 generation gestating females to the agricultural fungicide vinclo-zolin or pesticide DDT (dichloro-diphenyl-trichloroethane) was used to acquire the sperm from adult males in the subsequent F1 generation offspring, F2 generation grand offspring, and F3 generation great-grand offspring. The F1 generation sperm ncRNA had substantial overlap with the F1, F2 and F3 generation DMRs, suggesting a potential role for RNA-directed DNA methylation. The DMRs also had significant overlap with the DHRs, suggesting potential DNA methylation-directed histone retention. In addition, a high percentage of DMRs induced in the F1 generation sperm were maintained in subsequent generations. Conclusions: Many of the DMRs, ncRNA, and DHRs were colocalized to the same chromosomal location regions. Observations suggest an integration of DMRs, ncRNA, and DHRs in part involve RNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance
Recommended from our members
Epigenetic transgenerational inheritance, gametogenesis and germline development
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.Summary sentenceHow environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed
Role of epigenetic transgenerational inheritance in generational toxicology
Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease susceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inheritance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation animals must cause alterations in gene expression in these animals' somatic cells. In some cases of generational toxicology, negligible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants. Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into consideration generational toxicity will be needed to protect our future populations
Environmental induced transgenerational inheritance impacts systems epigenetics in disease etiology
Environmental toxicants have been shown to promote the epigenetic transgenerational inheritance of disease through exposure specific epigenetic alterations in the germline. The current study examines the actions of hydrocarbon jet fuel, dioxin, pesticides (permethrin and methoxychlor), plastics, and herbicides (glyphosate and atrazine) in the promotion of transgenerational disease in the great grand-offspring rats that correlates with specific disease associated differential DNA methylation regions (DMRs). The transgenerational disease observed was similar for all exposures and includes pathologies of the kidney, prostate, and testis, pubertal abnormalities, and obesity. The disease specific DMRs in sperm were exposure specific for each pathology with negligible overlap. Therefore, for each disease the DMRs and associated genes were distinct for each exposure generational lineage. Observations suggest a large number of DMRs and associated genes are involved in a specific pathology, and various environmental exposures influence unique subsets of DMRs and genes to promote the transgenerational developmental origins of disease susceptibility later in life. A novel multiscale systems biology basis of disease etiology is proposed involving an integration of environmental epigenetics, genetics and generational toxicology
Developmental origins of transgenerational sperm histone retention following ancestral exposures
Numerous environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Alterations in the germline epigenome are necessary to transmit transgenerational phenotypes. In previous studies, the pesticide DDT (dichlorodiphenyltrichloroethane) and the agricultural fungicide vinclozolin were shown to promote the transgenerational inheritance of sperm differential DNA methylation regions, non-coding RNAs and histone retention, which are termed epimutations. These epimutations are able to mediate this epigenetic inheritance of disease and phenotypic variation. The current study was designed to investigate the developmental origins of the transgenerational differential histone retention sites (called DHRs) during gametogenesis of the sperm. Vinclozolin and DDT were independently used to promote the epigenetic transgenerational inheritance of these DHRs. Male control lineage, DDT lineage and vinclozolin lineage F3 generation rats were used to isolate round spermatids, caput epididymal spermatozoa, and caudal sperm. The DHRs distinguishing the control versus DDT lineage or vinclozolin lineage samples were determined at these three developmental stages. DHRs and a reproducible core of histone H3 retention sites were observed using an H3 chromatin immunoprecipitation-sequencing (ChIP-Seq) analysis in each of the germ cell populations. The chromosomal locations and genomic features of the DHRs were analyzed. A cascade of epigenetic histone retention site alterations was found to be initiated in the round spermatids and then further modified during epididymal sperm maturation. Observations show that in addition to alterations in sperm DNA methylation and ncRNA expression previously identified, the induction of differential histone retention sites (DHRs) in the later stages of spermatogenesis also occurs. This novel component of epigenetic programming during spermatogenesis can be environmentally altered and transmitted to subsequent generations through epigenetic transgenerational inheritance.•Environmental induction of new transgenerational sperm histone retention sites.•Identification of a developmental cascade of histone retention.•Potential role of novel sperm histone retention in epigenetic inheritance
Epigenome-wide association study for transgenerational disease sperm epimutation biomarkers following ancestral exposure to jet fuel hydrocarbons
Jet fuel hydrocarbons is the generic name for aviation fuels used in gas-turbine engine powered aircraft. The Deepwater Horizon oil rig explosion created the largest environmental disaster in U.S. history, and the second largest oil spill in human history with over 800 million liters of hydrocarbons released into the Gulf of Mexico over a period of 3 months. Due to the widespread use of jet fuel hydrocarbons, this compound mixture has been recognized as the single largest chemical exposure for military personnel. Previous animal studies have demonstrated the ability of jet fuel (JP-8) exposure to promote the epigenetic transgenerational inheritance of disease susceptibility in subsequent generations. The diseases observed include late puberty, kidney, obesity and multiple disease pathologies. The current study is distinct and was designed to identify potential sperm DNA methylation biomarkers for specific transgenerational diseases. Observations show disease specific differential DNA methylation regions (DMRs) called epimutations in the transgenerational F3 generation great-grand-offspring male rats ancestrally exposed to jet fuel. The potential epigenetic DMR biomarkers were identified for late puberty, kidney, obesity, and multiple diseases, and found to be predominantly disease specific. These disease specific DMRs have associated genes that were previously shown to be linked with each of these specific diseases. Therefore, the germline (i.e. sperm) has environmentally induced ancestrally derived epimutations that have the potential to transgenerationally transmit disease susceptibilities to subsequent generations. Epigenetic biomarkers for specific diseases could be developed as medical diagnostics to facilitate clinical management of disease, and allow preventative medicine therapeutics
Recommended from our members
Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations
Epigenetic transgenerational inheritance potentially impacts disease etiology, phenotypic variation, and evolution. An increasing number of environmental factors from nutrition to toxicants have been shown to promote the epigenetic transgenerational inheritance of disease. Previous observations have demonstrated that the agricultural fungicide vinclozolin and pesticide DDT (dichlorodiphenyltrichloroethane) induce transgenerational sperm epimutations involving DNA methylation, ncRNA, and histone modifications or retention. These two environmental toxicants were used to investigate the impacts of parent-of-origin outcross on the epigenetic transgenerational inheritance of disease. Male and female rats were collected from a paternal outcross (POC) or a maternal outcross (MOC) F4 generation control and exposure lineages for pathology and epigenetic analysis. This model allows the parental allelic transmission of disease and epimutations to be investigated. There was increased pathology incidence in the MOC F4 generation male prostate, kidney, obesity, and multiple diseases through a maternal allelic transmission. The POC F4 generation female offspring had increased pathology incidence for kidney, obesity and multiple types of diseases through the paternal allelic transmission. Some disease such as testis or ovarian pathology appear to be transmitted through the combined actions of both male and female alleles. Analysis of the F4 generation sperm epigenomes identified differential DNA methylated regions (DMRs) in a genome-wide analysis. Observations demonstrate that DDT and vinclozolin have the potential to promote the epigenetic transgenerational inheritance of disease and sperm epimutations to the outcross F4 generation in a sex specific and exposure specific manner. The parent-of-origin allelic transmission observed appears similar to the process involved with imprinted-like genes
Recommended from our members
Epigenome-wide association study for pesticide (Permethrin and DEET) induced DNA methylation epimutation biomarkers for specific transgenerational disease
Permethrin and N,N-diethyl-meta-toluamide (DEET) are the pesticides and insect repellent most commonly used by humans. These pesticides have been shown to promote the epigenetic transgenerational inheritance of disease in rats. The current study was designed as an epigenome-wide association study (EWAS) to identify potential sperm DNA methylation epimutation biomarkers for specific transgenerational disease.Outbred Sprague Dawley gestating female rats (F0) were transiently exposed during fetal gonadal sex determination to the pesticide combination including Permethrin and DEET. The F3 generation great-grand offspring within the pesticide lineage were aged to 1 year. The transgenerational adult male rat sperm were collected from individuals with single and multiple diseases and compared to non-diseased animals to identify differential DNA methylation regions (DMRs) as biomarkers for specific transgenerational disease.The exposure of gestating female rats to a permethrin and DEET pesticide combination promoted transgenerational testis disease, prostate disease, kidney disease, and the presence of multiple disease in the subsequent F3 generation great-grand offspring. The disease DMRs were found to be disease specific with negligible overlap between different diseases. The genomic features of CpG density, DMR length, and chromosomal locations of the disease specific DMRs were investigated. Interestingly, the majority of the disease specific sperm DMR associated genes have been previously found to be linked to relevant disease specific genes.Observations demonstrate the EWAS approach identified disease specific biomarkers that can be potentially used to assess transgenerational disease susceptibility and facilitate the clinical management of environmentally induced pathology
Recommended from our members
Transgenerational sperm DMRs escape DNA methylation erasure during embryonic development and epigenetic inheritance
Germline transmission of epigenetic information is a critical component of epigenetic inheritance. Previous studies have suggested that an erasure of DNA methylation is required to develop stem cells in the morula embryo. An exception involves imprinted genes that escape this DNA methylation erasure. Transgenerational differential DNA methylation regions (DMRs) have been speculated to be imprinted-like and escape this erasure. The current study was designed to assess if morula embryos escape the erasure of dichlorodiphenyltrichloroethane-induced transgenerational sperm DMR methylation. Observations demonstrate that the majority (98%) of transgenerational sperm DMR sites retain DNA methylation and are not erased, so appearing similar to imprinted-like sites. Interestingly, observations also demonstrate that the majority of low-density CpG genomic sites had a significant increase in DNA methylation in the morula embryo compared to sperm. This is in contrast to the previously observed DNA methylation erasure of higher-density CpG sites. The general erasure of DNA methylation during embryogenesis appears applicable to high-density DNA methylation sites (e.g. CpG islands) but neither to transgenerational DMR methylation sites nor to low-density CpG deserts, which constitute the vast majority of the genome's DNA methylation sites. The role of epigenetics during embryogenesis appears more dynamic than the simple erasure of DNA methylation
- …