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Abstract

Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease sus-
ceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic
transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in
sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inher-
itance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that
carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation
animals must cause alterations in gene expression in these animals’ somatic cells. In some cases of generational toxicology, negli-
gible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants.
Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into
consideration generational toxicity will be needed to protect our future populations.
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Introduction
Previous studies have demonstrated the ability of environmental
toxicants to promote the epigenetic transgenerational inheritance
of disease, which can be termed “generational toxicology.” There-
fore, exposure to environmental toxicants can increase disease
rates in subsequent generations not directly exposed [1]. Although
the field of toxicology has focused on direct exposure toxicity, gen-
erational impacts have not been previously considered due in part
to the lack of continued direct exposure. This review describes the
molecular processes and factors that affect the epigenetic trans-
generational inheritance of disease related to ancestral chemical
toxicant exposure.

The term epigenetics was originally coined by C. H.Waddington
in the 1940s to refer to how an organism’s genes and its envi-
ronment can interact to result in non-Mendelian inheritance of

phenotypes [2, 3]. In more current usage, epigenetics is defined

as “the molecular factors and processes around the DNA that

regulate genome activity independent of DNA sequence, and are
mitotically stable” [4]. Epigenetic molecular factors include DNA

methylation [5, 6], histone modifications [7], changes to chro-

matin structure [8], expression of non-coding RNAs (ncRNAs)
[9, 10], and RNA methylation [11]. These epigenetic factors
and their interactions together comprise what is termed the
epigenome. Changes to epigenetic factors are a critical mecha-
nism by which organisms respond to their environment, altering

somatic cell gene expression to change physiology [12]. In addi-
tion, epigenetic changes underlie the differentiation of stem cells
into the many differentiated cell types in an organism [4, 13, 14].
Therefore, cellular differentiation and cell specificity is, in large

part, determined by epigenetics. Epigenetic mechanisms are a
critical part of all normal biological processes, including how the

environment influences biology.

Molecular Epigenetic Mechanisms
There are several epigenetic factors that act around the DNA
to regulate gene expression in cells. The most studied epige-
netic factor is DNA methylation. This involves the chemical
addition of functional methyl groups to DNA. DNA methyla-
tion occurs primarily at cytosine bases that are adjacent to
guanine, termed CpG residues, to form 5-methylcytosine (5mC)
[15]. Other chemical modifications of CpG residues can also
occur. The Ten-Eleven Translocation (TET) enzyme family can
successively oxidize 5mC to 5-hydroxymethylcytosine (5hmC),
5-formylcytosine and 5-carboxylcytosine [16]. Typically, 5mC is
thought to repress transcription, while 5hmC is thought to be
permissive of transcription [17, 18]. Another important function

of TET family enzymes is to remove DNA methylation during
early embryonic development and cellular differentiation to help
form embryonic stem cells [19–21]. DNA methylation can also

occur at adenosine residues to form N(6)-methyladenine (N6-mA)
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Figure 1: Schematic representation of the primary epigenetic factors and
processes of non-coding RNA, DNA methylation, chromatin structure,
histone modifications, and DNA structure presented. Modified from
Nilsson et al. [1]

[22]. N(6)-mA, once thought to only occur in prokaryotic organ-
isms, has been described to occur in mammalian embryonic

stem cells. DNA methylation has a critical role in regulating

gene expression and chromatin structure, which is present in
all cells and organisms (Fig. 1). The optimal DNA methylation
procedures use genome-wide analyses, such as methylated DNA
immunoprecipitation (MeDIP) and bisulfite sequencing, com-
pared to array technology, which assesses a few percent of the
genome [23].

DNA is wrapped around histone proteins to form nucleosomes.
Another epigenetic factor involves the chemical modification of
nucleosome histones that act to regulate gene expression [24, 25].
These histone modifications include lysine acetylation, lysine and
arginine methylation, arginine citrullination, lysine ubiquitina-
tion, lysine sumoylation, ADP-ribosylation, proline isomerization,
and serine/threonine/tyrosine phosphorylation [24]. The effects
of these modifications include changing chromatin structure,
suppressing gene expression in areas of heterochromatin, and
recruiting transcriptional cofactors [25, 26]. Additional histone-
related epigenetic factors include the use of histone variants,
changes to the spacing between nucleosomes, and the positioning
of chromatin within the nucleus [26]. These factors act together
to regulate gene expression by controlling gene accessibility and
recruitment of transcriptional cofactors [27, 28], (Fig. 1). The
optimal genome-wide histone modification technology uses chro-
matin immunoprecipitation procedures [29]. ncRNA molecules
can act as epigenetic factors [30, 31]. These are RNA sequences
that do not rely on complimentary base sequences to bind and
act to regulate gene expression [32]. ncRNAs have been shown
to regulate embryogenesis and other developmental processes
[33]. Long ncRNAs [30] and small ncRNAs regulate gene expres-
sion through DNA and protein binding to alter gene expression
and are present in all cell types and organisms [30], (Fig. 1). An
example includes transfer RNA-derived small tRNA fragments [34]
that can influence gene expression and are present in sperm and
can act on subsequent generations to alter phenotype [35, 36].
The optimal genome-wide technology used for ncRNA involves
direct RNA sequencing [37].

Methylation of RNA can affect gene expression and so is con-
sidered another epigenetic factor [38]. Methylation of adenosine to
form N6-mA is the most common epigenetic modification of the
internal RNA sequence. This is a reversible modification and is
associated with post-transcriptional regulation [39, 40]. Another
modification of RNA that can occur is methylation of cytosine

(m3C) in both mRNA and tRNA [41]. These epigenetic modifi-
cations of RNA all regulate RNA structure and gene expression
(Fig. 1). The optimal genome-wide analysis of RNA methylation
uses immunoprecipitation and RNA sequencing [42].

The three-dimensional coiling and looping of DNA and its asso-
ciated proteins within the nucleus is termed chromatin structure
and is itself an epigenetic factor [8]. The structure of chromatin
affects the accessibility of genes to transcriptional machinery
and can be affected by several of the other epigenetic factors,
(Fig. 1). The best example is the compacted chromatin struc-
ture of heterochromatin that represses gene expression and that
is promoted by hypermethylation of DNA versus the less com-
pacted euchromatin that is associatedwith active gene expression
and hypomethylation of DNA [24]. The optimal genome-wide
technology for chromatin structure analysis also uses chromatin
immunoprecipitation procedures [29].

Epigenetic Transgenerational Inheritance
Epigenetic information can be passed from one generation to
another through sperm or eggs. If an organism is exposed to an
environmental factor, such as a toxicant, epigenetic changes can
be induced both in the somatic cells of the individual exposed,
as well as in the directly exposed germ cells of the organism
(Fig. 2). When epigenetic changes due to direct exposure of germ
cells are passed on to affect the subsequent generation, this is
termed multigenerational epigenetic inheritance [43]. In mam-
mals, multigenerational inheritance can occur when males or
females of a founder F0 generation are exposed to an environmen-
tal factor, and their epigenetically altered germ cells go on to form
the F1 generation (Fig. 3). When gestating, F0-generation females
are exposed to an environmental factor, then their oocytes, and
the germ cells of each developing fetus, are also directly exposed.
Therefore, the F2 generation descendants of exposed pregnant
females are still considered to be the result of multigenerational
epigenetic inheritance (Fig. 3).

Epigenetic transgenerational inheritance is defined as
“germline-mediated inheritance of epigenetic information
between generations in the absence of continued direct envi-
ronmental influences that leads to phenotypic variation” [4]. If
males or non-pregnant females of the F0 generation are exposed
to an environmental factor, then epigenetic changes seen in the
unexposed F2 generation grand-offspring are an example of epige-
netic transgenerational inheritance (Fig. 3). Similarly, if pregnant
females are exposed, then the F3 generation great-grand-offspring
are the first generation that can exhibit epigenetic transgenera-
tional inheritance [43].

The Agouti mouse model is a well-studied example of epige-
netic multigenerational inheritance. Pregnant Agouti mice that
are fed a diet rich in methyl donors show increased methylation
of a methylation-sensitive allele of the Agouti gene, leading to a
coat color change in their F1 generation offspring [44]. This coat
color change is not passed on to the F2 or the transgenerational
F3 generation. Rather, the normal process of demethylation and
remethylation that occurs during germline development resets
the methylation state of the Agouti allele to its original level, and
a more normal coat color occurs [45].

Examples of transgenerational inheritance are well established
in the literature (reviewed in [1]). Early studies were performed
by Conrad Waddington in the 1940s, who coined the term “epi-
genetic” [46]. In these studies, fruit flies (Drosophila melanogaster)
were exposed to a heat shock that induced changes in wing struc-
ture that persisted for more than 16 generations. One of the first

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/article/8/1/dvac001/6529222 by guest on 26 January 2024



Role of epigenetic transgenerational inheritance in generational toxicology 3

Figure 2: Role of germ cell in epigenetic transgenerational inheritance. The exposure of an F0 generation gestating female promotes an epigenetic
alteration in the germ cell programming of the F1 generation fetus. The F1 generation adult passes the germ cell epimutations to the zygote and early
embryo to alter the embryonic stem cell epigenetics and transcriptome to impact all developing somatic cell epigenetics and transcriptomes to
promote cell and tissue disease susceptibility. The altered germ cell epigenetics is then transgenerationally transmitted to subsequent generations.
Modified from Nilsson et al. [1]

Figure 3: Environmentally induced transgenerational epigenetic
inheritance: schematic of environmental exposure and affected
generations for both gestating female and adult male or female. The
multigenerational direct exposures are indicated in contrast to the
transgenerational generation having no direct exposure. Modified from
Nilsson et al. [1]

studies in mammals to document molecular epigenetic changes
that were associated with the transgenerational inheritance of
disease involved exposing pregnant rats to the agricultural fungi-
cide and anti-androgenic endocrine disruptor vinclozolin [47].
The F3 generation descendants of the exposed pregnant rats had
increased rates of reproductive abnormalities such as testicular
germ cell apoptosis and decreased sperm motility. This was asso-
ciated with altered DNA methylation in the F3 generation sperm.
Subsequent studies showed that vinclozolin exposure resulted in
the transgenerational inheritance of increased susceptibility to
testis, prostate, and kidney disease, pubertal onset abnormalities,
ovarian disease, mammary tumors, and an increased obesity rate
in females [48–51]. Subsequently, many environmental toxicants
have been shown to be associated with the transgenerational
inheritance of increased disease susceptibility (Table 1). These
environmental toxicants have been shown to impact a variety of
different species from plants to humans (Fig. 4). This review will
focus on the generational toxicity of these substances and their
role in epigenetic transgenerational inheritance of disease.

Phthalates are plastics-derived endocrine disrupting com-
pounds that have been shown to induce transgenerational effects
in mice (Table 1). These effects include changes to male behav-
iors and to female corticosterone levels [52] and alterations in

Table 1: Environmental toxicant induction of epigenetic transgen-
erational inheritance: generational toxicology

Toxicants References

Vinclozolin [47–51, 84, 85, 92, 95, 98, 99,
101, 103, 104]

TCDD/dioxin [68]
Plastics compounds (BPA, phthalates
DEHP and DBP)

[52–59]

Jet fuel (JP8) (hydrocarbon mixture) [62]
Pesticides and insect repellent
(permethrin and DEET)

[67]

DDT [61, 87, 92, 96, 104]
Methoxychlor [66]
Chlordecone [102]
Methylmercury [76]
Lead [105]
Arsenic [63, 70–74]
Atrazine [64, 65]
Glyphosate [86, 93]
Decabromodiphenyl ether (BDE-209) [88]
Tributyltin [60]
5-azacytidine [77]
Ethanol [75]
Benzo[a]pyrene [69]
Genistein [79]

ovarian folliculogenesis and progesterone levels in females [53].
Exposure of mice to the plastics-derived compound bisphenol A
(BPA) induced transgenerational changes in social behavior and
in the expression of brain hormones, such as vasopressin and
oxytocin [54]. Ancestral exposure to BPA also effects imprinted
gene methylation and gene expression in the brains of mice [55].
Exposure of zebrafish to BPA results in a transgenerational
increase in heart disorders [56]. Medaka fish ancestrally exposed
to BPA or ethinylestradiol, an estrogenic environmental toxi-
cant from birth control pills, show transgenerational reductions
in fertility [57]. Exposure of pregnant rats to a mixture of BPA
and phthalates was shown to increase the incidence of pubertal
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Figure 4: Environmentally induced epigenetic transgenerational inheritance. Various exposures and species investigated

abnormalities, testis disease, and ovarian disease in the trans-
generational F3 generation [58]. In the nematode worm C. elegans,
exposure to nanoplastic particles resulted in a transgenerational
decline in reproduction [59].

Tributyltin is an environmental toxicant and endocrine disrup-
tor with obesogenic properties that has been shown to induce the
transgenerational inheritance of obesity and hepatic steatosis in
mice [60]. Other toxicants known to induce epigenetic transgen-
erational inheritance of obesity in rats include dichlorodiphenyl-
trichloroethane (DDT) [61], a mixture of BPA and phthalates [58],
and jet fuel hydrocarbons [62]. In mice, exposure to arsenic was
shown to transgenerationally increase adiposity in males [63].

Pesticides are environmental toxicants and induce the trans-
generational inheritance of increased disease risk, (Table 1).
Ancestral exposure of pregnant rats to the herbicide atrazine
induced transgenerational increases in testis disease, prostate
disease, kidney disease, a lean phenotype, and an altered age
at puberty [64, 65]. DDT exposure increases obesity transgener-
ationally but also induces increased rates of testis, ovary, and
kidney pathologies [61]. The pesticide methoxychlor, marketed
as a replacement for DDT, in rats induced transgenerational
increases in kidney disease and ovarian disease, which were pri-
marily inherited through the female germ line [66]. A mixture of
the insecticide permethrin and the insect repellent N, N-Diethyl-
meta-toluamide (DEET) induced transgenerational increases in
pubertal abnormalities, testis disease, and ovarian disease [67].

Some industrial pollutants have been investigated for their
capacity to induce transgenerational increases in disease. Ances-
tral exposure of rats to dioxins can lead to increased kidney
disease in males, pubertal abnormalities in females, and ovarian
primordial follicle loss and polycystic ovary disease in F3 gen-
eration animals [68]. Exposure of zebrafish to benzo[a]pyrene, a
byproduct of combustion of organic material, results in trans-
generational increases in neurobehavioral abnormalities and body
mass index [69].

Zebrafish ancestrally exposed to arsenic show transgenera-
tional alterations in motor activity and increased anxiety-like
behaviors [70]. Exposure of pregnant rats to arsenic resulted
in transgenerational increases in testis abnormalities, reduced
sperm quality, decreased adult body weight, and genotoxicity
of white blood cells [71, 72], associated with DNA methylation
changes and altered transcription of the IGF2 and H19 genes in
testis [72]. Arsenite exposure of the nematode worm C. elegans

resulted in alterations in sugar metabolism for six subsequent
generations [73] and with decreased reproductive brood size for
three generations [74].

Increased transgenerational disease has been associated with
other environmental toxicants, (Table 1). Exposure of pregnant
mice to ethanol vapor induces transgenerational neurological
changes in the F3 generation that resemble those of Fetal Alcohol
Spectrum Disorders [75]. Changes include altered ectopic intra-
neocortical connectivity and upregulation of Rzrβ and Id2 gene
expression in the neocortex. Zebrafish exposed to methylmercury
have unexposed descendants (F2 generation) that exhibit hyper-
activity and a visual deficit [76]. In the crustacean Daphnia magna,
exposure to the toxicant 5-azacytidine results in decreased body
length and reduced levels of DNA methylation in non-exposed
subsequent generations [77]. Endocrine disrupting chemicals can
be present as natural ingredients in foods. An example is genis-
tein, which is an estrogenic substance found in legumes and soy
[78]. Treatment of fertilized quail eggs with genistein resulted in
a transgenerational change in the age of sexual maturity of birds
three generations later [79].

Etiology of Epigenetic Transgenerational
Inheritance
In order for an environmental exposure or toxicant to induce
epigenetic transgenerational inheritance, two conditions must
be met. First, exposure to a toxicant must result in epigenetic
changes in the germ cells (sperm or eggs) since it is the germ
cells that carry molecular information to subsequent generations
(Fig. 2). Second, the epigenetic changes induced in transgenera-
tional generation animals must cause changes in gene expression
in these animals or else no phenotypic changes will occur.

There are two periods during normal development when DNA
methylation patterns are largely erased and reset. This epige-
netic reprograming of DNA methylation occurs both immediately
after fertilization in the early embryo and in developing germ
cells at the time of gonadal sex determination [80]. This pro-
cess allows embryonic stem cells to develop by removing epi-
genetic constraints to pluripotency. The well-studied exception
to this is the case of imprinted genes, which retain their epi-
genetic DNA methylation pattern in a parent-of-origin allelic
manner [81, 82]. In situations where environmentally induced
epigenetic changes are inherited, some retention of these DNA
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methylation patterns is thought to occur in an imprinted gene-
like manner [83] (Fig. 2). Then epigenetic changes present in germ
cells can transmit an altered epigenome to all cells of the sub-
sequent developing embryo, potentially resulting in changes to
gene expression that lead to an altered phenotype and disease [84]
(Fig. 2).

There are many examples of exposure to toxicants leading to
transgenerational epigenetic changes in germ cells, (Fig. 4 and
Table 1). Altered DNA methylation of a region of DNA is termed a
Differential DNA Methylated Region (DMR). If F0 generation preg-
nant rats were treated with vinclozolin, then sperm from the
transgenerational F3 generation has been shown to have DMRs
[48, 85]. Similarly, DMRs were found in transgenerational sperm
after ancestral exposure of rats to a mixture of plastic-derived
compounds (phthalates and BPA) [58], the dioxin TCDD [68], jet
fuel hydrocarbons (JP8) [62], the herbicides atrazine [65] and
glyphosate [86], the pesticidesmethoxychlor [66] andDDT [61, 87],
a mixture of the insecticide permethrin and the insect repellent
DEET [67], and the flame retardant BDE-209 [88]. In zebrafish,
transgenerational spermDMRs are found after ancestral exposure
to methylmercury [76].

Other epigenetic factors, in addition to DNA methylation, can
be altered in sperm transgenerationally. During spermatogene-
sis, the histones around which DNA is wrapped are replaced by
protamines to allow DNA to be tightly compacted into the small
sperm head [89]. However, there are 1–10% of histones that are
retained in the sperm of most mammals [90]. These retained his-
tones are thought to help regulate some of the early gene expres-
sion processes in the resulting embryos [91]. Studies in rats found
that additional histone retention sites were present in the F3 gen-
eration sperm after pregnant F0 generation animals were treated
with vinclozolin, DDT, glyphosate, or atrazine [64, 92, 93]. There-
fore, histone retention in sperm is another epigenetic mechanism
for transgenerational inheritance (Fig. 2). Post-translational mod-
ification of those histones retained in sperm is another epigenetic
factor that can mediate transgenerational inheritance of disease.
As an example, changes to methylation of histone 3 lysine 4
(H3K4me2) inmouse sperm have been associated with a transgen-
erational decrease in pup survival and impaired development [94].
Exposure of pregnant rats to the toxicants vinclozolin or DDT both
resulted in sites of altered methylation of lysine 27 of histone 3
(H3K27me3) in transgenerational F3 generation sperm [92, 95, 96].

The expression of ncRNAs in sperm is another epigenetic fac-
tor that can be altered after exposure to endocrine disruptors
[97] (Fig. 2). In studies in rats, ancestral exposure to vinclozolin
induced changes in the levels of several sperm ncRNAs, including
tRNA-derived small ncRNAs, namely 5′ halves of mature tRNAs,
and micro-RNAs (miRNAs) [95, 98]. Similar results were found
transgenerationally after ancestral exposure to DDT [96]. Trans-
generational changes in ncRNA expression have been shown to
occur early in germ cell development, asmice ancestrally exposed
to vinclozolin have altered miRNA expression in primordial germ
cells [99].

The above epigenetic factors found in sperm likely act together
to pass altered phenotypes to subsequent generations [97]. Expo-
sure to either vinclozolin or DDT induces concurrent transgen-
erational changes to the DNA methylation, histone retention,
and ncRNA in the sperm epigenome [95, 96]. In these cases,
there is evidence that RNA-directed DNA methylation and DNA
methylation-directed histone retention are a part of epigenetic
transgenerational inheritance [100]. The combined actions of the
epigenetic factors in germ cells provide an epigenetic mechanism

by which exposure to endocrine-disrupting compounds can pro-
mote the inheritance of pathologies across generations.

Epigenetic changes passed through germ cells to subsequent
generations do not themselves alter phenotype. Phenotypic
changes are the result of changes in gene expression. Transgen-
erational increases in kidney or prostate disease, or in tumor
development, are the result of abnormal gene expression in the
affected somatic cells. Germ cells with an altered epigenome pro-
duce embryonic stem cells that then promote epigenetic changes
in all somatic cells [1, 84] (Fig. 2). These somatic cell epige-
netic changes could then promote changes in gene expression
that alters the phenotypes of these cells, including promoting
an increased susceptibility to develop disease [101]. Therefore,
in a transgenerational animal, all cell types have an altered
epigenome and transcriptome. Those cell types sensitive to this
alteration will have a susceptibility to develop diseases.

Several examples of transgenerational changes to gene
expression following ancestral exposure to toxicants have been
reported. After gestatingmice were exposed to the organochlorine
insecticide chlordecone, there were transgenerational changes
in the transcriptome of prostates from F3 generation animals
[102]. This was accompanied by an increased prostatic intraep-
ithelial neoplasia phenotype and by histone H3K4 trimethylation
(H3K4me3) and H3K27 trimethylation (H3K27me3) changes in
somatic prostate cells. Similarly, ancestral exposure to vinclo-
zolin in rats resulted in transgenerational changes to the prostate
epithelial cell transcriptome and DNA methylation, associated
with later-life development of prostate disease [103]. Ancestral
exposure to vinclozolin also resulted in transgenerational changes
to the transcriptome and epigenome of testicular Sertoli cells,
associated with male infertility [84]. In female rats, both DDT and
vinclozolin ancestral exposure induced transcriptome changes in
the granulosa cells of the ovary, consistent with later life devel-
opment of polycystic ovarian disease and reduced oocyte number
[104]. This was accompanied by sites of altered DNA methylation
and changes of expression of ncRNAs in the granulosa cells. In
zebrafish, exposure of developing F0 generation embryos to lead
resulted in F2 generation changes in brain gene expression for
genes involved in physiological processes such as synaptic func-
tion and plasticity, neurogenesis, endocrine homeostasis, and
epigenetic modification [105]. Ancestral exposure of zebrafish to
arsenic resulted in transgenerational changes in brain-derived
neurotrophic factor expression in the brain [70]. Ancestral arsenic
exposure in C. elegans nematode worms decreased somatic cell
mRNA expression of the LSD/KDM1 and spr-5 genes [74]. There-
fore, the toxicant-induced epigenetic transgenerational inheri-
tance of pathology is due to somatic cell epigenetic and tran-
scriptome alterations that generate the phenotypes observed
(Fig. 2).

A more comprehensive study of transgenerational alterations
to gene expression was performed using F3 generation rats ances-
trally exposed to vinclozolin [101]. The transcriptomes of 11 dif-
ferent organ tissues in male and female rats were evaluated and
compared to those same organ tissues in F3 generation control
rats ancestrally treated with vehicle. Transgenerational changes
to gene expression were found in all tissues evaluated. There was
minimal overlap in the genes affected between tissues, but there
was considerable overlap in the physiological pathways affected
by these gene expression changes. For example, both prostate and
liver tissues were enriched for genes in transcription and focal
adhesion processes, but the specific genes altered were not the
same in each tissue [101]. Across the genome of these animals, it
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was found that there existed statistically over-represented clus-
ters of gene expression changes and that these regions, termed
Epigenetic Control Regions (ECR), contained sites of altered DNA
methylation (DMRs) and long ncRNA expression [95, 106]. The
hypothesis is that the genes within an ECR are epigenetically reg-
ulated as a block [107]. Therefore, in one organ tissue, such as the
liver, those genes that would normally be expressed from an ECR
in liver cells would have altered expression, while in the prostate,
a different set of genes from that same ECR (those normally
expressed in the prostate) would have altered expression. These
investigations all support the proposed mechanism of toxicant-
induced transgenerational epimutations altering gene expression
and ultimately leading to phenotypic effects, most importantly
increased susceptibility for disease (Fig. 2).

Generational Toxicology
The existence of generational toxicological processes, in which
the effects of toxicant exposures are seen several generations
later, suggests regulatory decisions about toxicants in our society
should now consider potential effects across generations. The
current regulatory paradigm of evaluating experiments, where
pregnant animals are treated and their direct offspring are eval-
uated for negative effects, may not go far enough. It is possible,
with epigenetic transgenerational inheritance, that increases in
disease are not seen until later generations. When pregnant F0
generation rats were treated with the herbicide glyphosate, no
serious abnormalities were seen in the directly exposed F1 gen-
eration. However, dramatic increases in prostate disease, obesity,
kidney disease, ovarian disease, and parturition (birth) abnormal-
ities were seen in the F2 and F3 generations [86, 93]. Similarly, rats
ancestrally exposed to the herbicide atrazine showed only a mild
decrease in size in the F1 generation, but the F2 and F3 generations
were found to have increased frequency of testis disease, mam-
mary tumors, early onset puberty, motor hyperactivity, and a lean
phenotype compared to controls [65]. The epigenetic transgen-
erational inheritance of abnormalities and increased incidence
of disease after ancestral exposure to environmental toxicants
should be of concern of the public and regulatory agencies for
human health reasons [108].

In considering the experimental approach for regulatory agen-
cies, animal studies should include breeding to the F3 generation
to assess generational toxicity. An alternate approach would be to
assess the epigenetic changes in the germ cells from the F1 gener-
ation animals. In the event germ cell epimutations exist, then the
potential for generational toxicity is present. This would require
additional generations to be obtained for epigenetic and pathol-
ogy analysis. Although any epigenetic factor could be assessed,
DNA methylation has been shown to be robust and one of the key
epigenetic processes to assess. Genome-wide procedures such as
bisulfite sequencing or MeDIP are optimal to assess germline epi-
genetic impacts. Therefore, the technology and previous literature
demonstrate generational toxicity needs to be considered in the
field of toxicology.

Conclusions
Research into environmentally induced epigenetic transgenera-
tional inheritance has provided evidence for transgenerational
inheritance of epimutations and phenotype changes in a wide
variety of organisms [109, 110], (Fig. 4). Exposure to toxicants can
induce epigenetic changes in germ cells that are passed to sub-
sequent generations. When epimutations in the resulting embryo

become imprinted-like and escape the normal processes of epi-
genetic reprogramming that occur during embryogenesis, then
the epigenome of the embryonic stem cells is altered, which
impacts all the cell types of the developing fetus and adult (Fig. 2).
The altered epigenome, which can change gene expression and
phenotype in all cell types in the body, increases disease suscep-
tibility later in life. These epigenetic changes are passed to that
organism’s germ cells, which can be inherited by the subsequent
generation. If epigenetic and phenotypic changes are passed to a
generation that was never exposed to the toxicant, then epigenetic
transgenerational inheritance has resulted in generational toxi-
cology [1]. Epigenetic transgenerational inheritance of increased
susceptibility to disease is an example of generational toxicity,
in which toxicants affect non-exposed future generations. Gov-
ernmental policies regulating toxicant exposure currently do not
take generational effects into account. Future toxicity testing and
regulations need to consider the effects of epigenetic transgener-
ational inheritance of disease and generational toxicology. A new
approach that takes into consideration generational toxicology
will be needed to protect our future populations.
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