42 research outputs found
Cardiac taurine and principal amino acids in right and left ventricles of patients with either aortic valve stenosis or coronary artery disease:the importance of diabetes and gender
Free intracellular taurine and principal α-amino acids (glutamate, glutamine, aspartate, asparagine and alanine) are abundant in human heart. They are cellular regulators and their concentration can change in response to disease and cardiac insults and have been shown to differ between hypertrophic left ventricle (LV) and the relatively ânormalâ right ventricle (RV) in patients with aortic valve stenosis (AVS). This difference has not been shown for coronary artery disease (CAD) and there are no studies that have simultaneously compared amino acid content in LV and RV from different pathologies. In this study we investigated the effect of disease on taurine and principal amino acids in both LV and RV, measured in myocardial biopsies collected from patients with either AVS (n = 22) or CAD (n = 36). Amino acids were extracted and measured using HPLC. Intra- and inter-group analysis was performed as well as subgroup analysis focusing on gender in AVS and type 2 diabetes in CAD. LV of both groups has significantly higher levels of taurine compared to RV. This difference disappears in both diabetic CAD patients and in male AVS patients. Alanine was the only α-amino acid to be altered by diabetes. LV of female AVS patients had significantly more glutamate, aspartate and asparagine than corresponding RV, whilst no difference was seen between LV and RV in males. LV of females has higher glutamate and glutamine and less metabolic stress than LV of males. This work shows that in contrast to LV, RV responds differently to disease which can be modulated by gender and diabetes
Geographical variation in dementia:Examining the role of environmental factors in Sweden and Scotland
BACKGROUND: This study aimed to estimate the magnitude of geographical variation in dementia rates and suggest explanations for this variation. Small-area studies are scarce, and none has adequately investigated the relative contribution of genetic and environmental factors to the distribution of dementia. METHODS: We present two complementary small-area hierarchical Bayesian disease mapping studies using the comprehensive Swedish Twin Registry (n=27,680) and the 1932 Scottish Mental Survey cohort (n=37,597). The twin study allowed us to isolate the area in order to examine the effect of unshared environmental factors. The Scottish Mental Survey study allowed us to examine various epochs in the life course â approximately age 11 years and adulthood. RESULTS: We found a 2-to 3- fold geographical variation in dementia odds in Sweden, after twin random effects â likely to capture genetic and shared environmental variance â were removed. In Scotland we found no variation in dementia odds in childhood but substantial variation, following a broadly similar pattern to Sweden, by adulthood. CONCLUSIONS: There is geographical variation in dementia rates. Most of this variation is likely to result from unshared environmental factors that have their effect in adolescence or later. Further work is required to confirm these findings and identify any potentially modifiable socio-environmental risk factors for dementia responsible for this geographical variation in risk. However, if these factors do exist and could be optimized in the whole population, our results suggest that dementia rates could be halved
Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction
Myocardial infarction (MI) is the leading cause of death worldwide. MicroRNAs regulate the expression of their target genes, thus mediating a plethora of pathophysiological functions. Recently, miRNA-24 emerged as an important but controversial miRNA involved in post-MI responses. Here, we aimed at clarifying the effect of adenovirus-mediate intra-myocardial delivery of a decoy for miRNA-24 in a mouse MI model and to investigate the impact of miRNA-24 inhibition on angiogenesis and cardiovascular apoptosis. After MI induction, miRNA-24 expression was lower in the peri-infarct tissue and its resident cardiomyocytes and fibroblasts; while it increased in endothelial cells (ECs). Local adenovirus-mediated miRNA-24 decoy delivery increased angiogenesis and blood perfusion in the peri-infarct myocardium, reduced infarct size, induced fibroblast apopotosis and overall improved cardiac function. Notwithstanding these beneficial effects, miRNA-24 decoy increased cardiomyocytes apoptosis. In vitro, miRNA-24 inhibition enhanced ECs survival, proliferation and networking in capillary-like tubes and induced cardiomyocyte and fibroblast apoptosis. Finally, we identified eNOS as a novel direct target of miR-24 in human cultured ECs and in vivo. Our findings suggest that miRNA-24 inhibition exerts distinct biological effects on ECs, cardiomyocytes and fibroblasts. The overall result of post-infarction local miRNA-24 inhibition appears to be therapeutic
Environmental risk factors for dementia: a systematic review
Background - Dementia risk reduction is a major and growing public health priority. While certain modifiable risk factors for dementia have been identified, there remains a substantial proportion of unexplained risk. There is evidence that environmental risk factors may explain some of this risk. Thus, we present the first comprehensive systematic review of environmental risk factors for dementia.
Methods - We searched the PubMed and Web of Science databases from their inception to January 2016, bibliographies of review articles, and articles related to publically available environmental data. Articles were included if they examined the association between an environmental risk factor and dementia. Studies with another outcome (for example, cognition), a physiological measure of the exposure, case studies, animal studies, and studies of nutrition were excluded. Data were extracted from individual studies which were, in turn, appraised for methodological quality. The strength and consistency of the overall evidence for each risk factor identified was assessed.
Results - We screened 4784 studies and included 60 in the review. Risk factors were considered in six categories: air quality, toxic heavy metals, other metals, other trace elements, occupational-related exposures, and miscellaneous environmental factors. Few studies took a life course approach. There is at least moderate evidence implicating the following risk factors: air pollution; aluminium; silicon; selenium; pesticides; vitamin D deficiency; and electric and magnetic fields.
Conclusions - Studies varied widely in size and quality and therefore we must be circumspect in our conclusions. Nevertheless, this extensive review suggests that future research could focus on a short list of environmental risk factors for dementia. Furthermore, further robust, longitudinal studies with repeated measures of environmental exposures are required to confirm these associations
Prospective investigation of risk factors for prostate cancer in the UK Biobank cohort study
Prostate cancer is the most common cancer in British men but its aetiology is not well understood. We aimed to identify risk factors for prostate cancer in British males.We studied 219â335 men from the UK Biobank study who were free from cancer at baseline. Exposure data were collected at recruitment. Prostate cancer risk by the different exposures was estimated using multivariable-adjusted Cox proportional hazards models.In all, 4575 incident cases of prostate cancer occurred during 5.6 years of follow-up. Prostate cancer risk was positively associated with the following: black ethnicity (hazard ratio black vs white=2.61, 95% confidence interval=2.10-3.24); having ever had a prostate-specific antigen test (1.31, 1.23-1.40); being diagnosed with an enlarged prostate (1.54, 1.38-1.71); and having a family history of prostate cancer (1.94, 1.77-2.13). Conversely, Asian ethnicity (Asian vs white hazard ratio=0.62, 0.47-0.83), excess adiposity (body mass index (â©Ÿ35 vs <25âkgâm-2=0.75, 0.64-0.88) and body fat (â©Ÿ30.1 vs <20.5%=0.81, 0.73-0.89)), cigarette smoking (current vs never smokers=0.85, 0.77-0.95), having diabetes (0.70, 0.62-0.80), and never having had children (0.89, 0.81-0.97) or sexual intercourse (0.53, 0.33-0.84) were related to a lower risk.In this new large British prospective study, we identified associations with already-established, putative and possible novel risk factors for being diagnosed with prostate cancer. Future research will examine associations by tumour characteristics
Hearts from Mice Fed a Non-Obesogenic High-Fat Diet Exhibit Changes in Their Oxidative State, Calcium and Mitochondria in Parallel with Increased Susceptibility to Reperfusion Injury
High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown.To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury.Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet.This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults
Association between coeliac disease and cardiovascular disease: a prospective analysis in UK Biobank
Objectives: To investigate whether people with coeliac disease are at increased risk of cardiovascular disease, including ischaemic heart disease, myocardial infarction, and stroke.
Design: Prospective analysis of a large cohort study.
Setting: UK Biobank database.
Participants: 469 095 adults, of which 2083 had coeliac disease, aged 40-69 years from England, Scotland, and Wales between 2006 and 2010 without cardiovascular disease at baseline.
Main outcome measure: A composite primary outcome was relative risk of cardiovascular disease, ischaemic heart disease, myocardial infarction, and stroke in people with coeliac disease compared with people who do not have coeliac disease, assessed using Cox proportional hazard models.
Results: 40â687 incident cardiovascular disease events occurred over a median follow-up of 12.4 years (interquartile range 11.5-13.1), with 218 events among people with coeliac disease. Participants with coeliac disease were more likely to have a lower body mass index and systolic blood pressure, less likely to smoke, and more likely to have an ideal cardiovascular risk score than people who do not have coeliac disease. Despite this, participants with coeliac disease had an incidence rate of 9.0 cardiovascular disease cases per 1000 person years (95% confidence interval 7.9 to 10.3) compared with 7.4 per 1000 person years (7.3 to 7.4) in people with no coeliac disease. Coeliac disease was associated with an increased risk of cardiovascular disease (hazard ratio 1.27 (95% confidence interval 1.11 to 1.45)), which was not influenced by adjusting for lifestyle factors (1.27 (1.11 to 1.45)), but was strengthened by further adjusting for other cardiovascular risk factors (1.44 (1.26 to 1.65)). Similar associations were identified for ischaemic heart disease and myocardial infarction but fewer stroke events were reported and no evidence of an association between coeliac disease and risk of stroke.
Conclusions: Individuals with coeliac disease had a lower prevalence of traditional cardiovascular risk factors but had a higher risk of developing cardiovascular disease than did people with no coeliac disease. Cardiovascular risk scores used in clinical practice might therefore not adequately capture the excess risk of cardiovascular disease in people with coeliac disease, and clinicians should be aware of the need to optimise cardiovascular health in this population
The effect of disease on human cardiac protein expression profiles in paired samples from right and left ventricles
BACKGROUND: Cardiac diseases (e.g. coronary and valve) are associated with ventricular cellular remodeling. However, ventricular biopsies from left and right ventricles from patients with different pathologies are rare and thus little is known about disease-induced cellular remodeling in both sides of the heart and between different diseases. We hypothesized that the protein expression profiles between right and left ventricles of patients with aortic valve stenosis (AVS) and patients with coronary artery disease (CAD) are different and that the protein profile is different between the two diseases. Left and right ventricular biopsies were collected from patients with either CAD or AVS. The biopsies were processed for proteomic analysis using isobaric tandem mass tagging and analyzed by reverse phase nano-LC-MS/MS. Western blot for selected proteins showed strong correlation with proteomic analysis. RESULTS: Proteomic analysis between ventricles of the same disease (intra-disease) and between ventricles of different diseases (inter-disease) identified more than 500 proteins detected in all relevant ventricular biopsies. Comparison between ventricles and disease state was focused on proteins with relatively high fold (±1.2 fold difference) and significant (Pâ<â0.05) differences. Intra-disease protein expression differences between left and right ventricles were largely structural for AVS patients and largely signaling/metabolism for CAD. Proteins commonly associated with hypertrophy were also different in the AVS group but with lower fold difference. Inter-disease differences between left ventricles of AVS and CAD were detected in 9 proteins. However, inter-disease differences between the right ventricles of CAD and AVS patients were associated with differences in 73 proteins. The majority of proteins which had a significant difference in one ventricle compared to the other pathology also had a similar trend in the adjacent ventricle. CONCLUSIONS: This work demonstrates for the first time that left and right ventricles have a different proteome and that the difference is dependent on the type of disease. Inter-disease differential expression was more prominent for right ventricles. The finding that a protein change in one ventricle was often associated with a similar trend in the adjacent ventricle for a large number of proteins suggests cross-talk proteome remodeling between adjacent ventricles