3,870 research outputs found

    Personal Recommendation in Mobile Environment

    Get PDF

    Bayesian Safe Policy Learning with Chance Constrained Optimization: Application to Military Security Assessment during the Vietnam War

    Full text link
    Algorithmic and data-driven decisions and recommendations are commonly used in high-stakes decision-making settings such as criminal justice, medicine, and public policy. We investigate whether it would have been possible to improve a security assessment algorithm employed during the Vietnam War, using outcomes measured immediately after its introduction in late 1969. This empirical application raises several methodological challenges that frequently arise in high-stakes algorithmic decision-making. First, before implementing a new algorithm, it is essential to characterize and control the risk of yielding worse outcomes than the existing algorithm. Second, the existing algorithm is deterministic, and learning a new algorithm requires transparent extrapolation. Third, the existing algorithm involves discrete decision tables that are common but difficult to optimize over. To address these challenges, we introduce the Average Conditional Risk (ACRisk), which first quantifies the risk that a new algorithmic policy leads to worse outcomes for subgroups of individual units and then averages this over the distribution of subgroups. We also propose a Bayesian policy learning framework that maximizes the posterior expected value while controlling the posterior expected ACRisk. This framework separates the estimation of heterogeneous treatment effects from policy optimization, enabling flexible estimation of effects and optimization over complex policy classes. We characterize the resulting chance-constrained optimization problem as a constrained linear programming problem. Our analysis shows that compared to the actual algorithm used during the Vietnam War, the learned algorithm assesses most regions as more secure and emphasizes economic and political factors over military factors.Comment: 40 pages, 19 figure

    Numerical analysis of flexural performances of composite steel-timber beams under fire conditions

    Get PDF
    Recently, a novel type of composite structure, composite steel-timber (CST) structure, has attracted much attention by combining steel and timber in an effective way to form composite structural components, which unitises the advantages of high strength and excellent ductility of steel and decent sustainability and fire resistance of timber. However, the existing research is lacking, especially in structural fire design and analysis. In this study, based on the sequentially coupled method, the commercial finite element software ABAQUS was used to numerically simulate the dynamic performances in the temperature field and the flexural behaviours in the displacement field for a typical CST beam with a steel element embedded within the Glulam and connected by adhesives and bolts under standard fire for two hours. In the numerical simulations, the temperature distributions within the CST beam were explored, and the flexural performances of the beam in the displacement field were examined. Through the comparative analysis, the temperature distributions in the embedded steel beam and the surrounding Glulam beam under one-hour standard fire verified the advantages of this type of CST beam in structural fire design. Specifically, under a 2-hour standard fire, the surrounding Glulam could still protect the embedded steel beam from sustaining too high temperatures, so as to retain most of its material properties and help maintain the bearing capacity of the whole structure and improve the refractory limit. Parametric studies on the fire resistance of the CST beam were also conducted by adjusting the bolt spacing and the protection thickness of the Glulam. The obtained results indicated that reducing the bolt spacing and the thickness of the Glulam protection layer would have an adverse effect on the temperature distributions in the embedded steel element to a large extent, and would eventually lead to its rapid heating and strength loss and the final failure of the whole CST structure

    Design method for stabilization of earth slopes with micropiles

    Get PDF
    AbstractAs one of the measures for slope fast reinforcement, micropiles are always designed as a group. In this paper, an analytic model for the ultimate resistance of micropile is proposed, based on a beam–column equation and an existing p–y curve method. As such, an iterative process to find the bending moment and shear capacity of the micropile section has been developed. The formulation for calculating the inner force and deflection of the micropile using the finite difference method is derived. Special attention is given to determine the spacing of micropiles with the aim of achieving the ultimate shear capacity of the micropile group. Thus, a new design method for micropiles for earth slope stabilization is proposed that includes details about choosing a location for the micropiles within the existing slope, selecting micropile cross section, estimating the length of the micropile, evaluating the shear capacity of the micropiles group, calculating the spacing required to provide force to stabilize the slope and the design of the concrete cap beam. The application of the method to an embankment landslide in Qinghai province, China, is described, and monitoring data indicated that slope movement had effectively ceased as a result of the slope stabilization measure, which verified the effectiveness of the design method

    Seismic performance evaluation of a high-rise building with structural irregularities

    Get PDF
    In this study, the seismic performances of a 14-storey office building in Nanjing, China, due to its plan and vertical irregularities in the structural system, were evaluated using the response spectrum method, elastic time history analysis and elastic–plastic time history analysis. In combination of these three methods, the storey drifts and elastic–plastic states of typical structural members under three levels of earthquakes were determined to verify the robustness of the structural design program. The damage states of typical structural members at some sensitive positions were estimated and evaluated under rare earthquakes. Consequently, all structural members were within the scope of elastic performances under the actions of frequent earthquakes. The maximum displacements and storey drifts satisfied the requirements of the design codes within the scope of elastic or elastic–plastic deformations. The induced damages could reach “moderate damage” states, satisfying the requirements for the expected performances by the codes. The consequences indicated that the design scheme and critical parameters for the building structure satisfied the requirements of seismic performances from the codes

    Architectural formation of growable light steel structure and its 3D visualisation design and construction method

    Get PDF
    With the applications of new construction technologies and design ideas, innovative construction methods and architectural designs promote overall productivity and enrich architectural impressions. However, faced with the contradictions between construction efficiency, project benefits, and sustainability, together with the dynamically variable social demands and monotonous design of current temporary light steel structures, a new type of growable light steel structure with parameterisable and assembled architectural units is proposed. Besides, a fast-assembled track foundation that can be detachable and recycled is adopted. Both can promote the growth of light steel units. To be specific, its architectural spaces can be extended and contracted, and the structural form and service space can be adjusted by the reorganisation and optimisation of unit arrangements. Meanwhile, due to the advantages of information integrations and 3D visualisations of BIM technology, a BIM-based design and construction method of growable light steel structures is studied. Based on the arrangements of track and parametrically transformed light steel units, this study expands the architectural forms of light steel structures. It explores their respective applications in practical architectural design to solve current shortages of land resources, properly respond to variable building environments, simultaneously enrich the design schemes of current light steel structures, improve the utilisation rate of structural spaces, and enhance the aesthetic sensations of buildings
    • …
    corecore