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Abstract 

 
With a fervent interest in the development of M-Commerce applications, we are engaged in a 
TAMC project, whose principal goal is to develop technologies for supporting targeted 
advertisement in mobile environment. The first investigation, the PR system, which aims at 
recommending vendors’ web pages, which include offers and promotions, to interested 
customers, is reported here. Therefore, in this paper, we present the developed location-aware 
framework and constructed approaches. Simulated evaluation and implementation 
experience are also discussed. 
 
Keywords: M-Commerce, Recommender systems, Data mining 
 
 
1. Introduction 
Mobile computing, where users provided with PDAs, cellphones or laptops are free to move 
while staying connected to service networks, has proven to be a true revolution (Stafford and 
Gillenson, 2003; Brunato and Battiti 2003). Exploring the promises of mobility to design new 
applications and services, which automatically accommodate customer’s shopping needs with 
location dependent vendor offers and promotions, has generated considerable excitement 
among both practitioners (HP, www.hp.com; Nokia, www.nokia.com; Samsung, 
www.samsung.com ) and academics (Sun, 2003; Tasasewish, 2003; Tewari et al., 2002; 
Brunato and Battiti 2003).  
 
With a fervent interest in the development of such applications and services, we are engaged 
in TAMC (Targeted Marketing in M-Commerce) project. The project, whose principal goal is 
to develop technologies for supporting M-Commerce marketing services, is a marriage of 
three series investigations. The first investigation involved the design and construction of a 
personal recommendation system, termed as the PR system. The second investigation 
addresses the advertisement allocation problem, and the third investigation focus on the 
interface design in the context. The progress of the first investigation is reported in this paper. 
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The first investigation, the PR system, aims at recommending vendors’ web pages, which 
include offers and promotions, to interested customers. The PR system adopted a 
location-aware framework so that customers can receive the information of their preferred 
vendors which are in their neighborhood. The core of the PR system is a recommendation 
mechanism, which carries out analysis of consumer’s history and position so that venders’ 
information are able to be ranked in order of the likelihood with which they match the 
preferences of a customer. Various characteristics of mobile environment are taken into 
account, and the endeavor has resulted in a recommendation system that is suitable in 
M-Commerce. 
 
2. Literature review 
In E-commerce, we have seen the emergence of many recommendation systems that intend to 
provide personal recommendation to various types of products and services, including news 
and emails (see http://www.netperceptions.com/ for a commercial site and (Goldberg, 1992; 
Lang, 1995; Konstan, 1997; Billsus, 1999) for research prototypes), Web pages (see 
http://my.yahoo.com/ for a commercial site and (Balabanovi’c, 1997; Terveen, 1997; Pazzani, 
1997; Armstrong, 1997) for research prototypes), books (see http://www.amazon.com/ for a 
commercial site and (Mooney, 2000) for a research prototype), albums (see 
http://www.CDNow.com/ for a commercial site and (Shardanand, 1995) for a research 
prototype), and movies (see http://movies.eonline.com/ for a commercial site and (Alspector, 
1998; Breese, 1998; Basu, 1998; Ansari, 2000; Pennock, 2000; Schafer, 2001) for research 
prototypes). 
 
The first type of recommendation techniques was called the content-based approach (CACM, 
1992). A content-based approach characterizes recommendable items by a set of content 
features and represents users’ interest profile by a similar feature set. Then, the relevance of a 
given content item and the user’s interest profile is measured as the similarity of this 
recommendable item to the user’s interest profile. Content-based approaches select 
recommendable items that have a high degree of similarity to the user’s interest profile. 
 
Another type of recommendation technique, the collaborative approach (or sometimes called 
the social-based approach), takes into account the given user’s interest profile and the 
profiles of other users with similar interests (Shardanand, 1995). Specifically, the 
collaborative approach looks for relevance among users by observing their ratings assigned to 
products in a training set of limited size. The “nearest–neighbor” users are those that exhibit 
the strongest relevance to the target user. These users then act as “recommendation partners” 
for the target user, and collaborative approaches recommend the target user items that appear 
in the profiles of these recommendation partners (but not in the target user’s profile). 

 289



 
We observe that traditional recommendation techniques are not suitable in mobile 
environment. Firstly, both content-based and collaborative approaches require customers’ 
provision of rating scores on selected items such that both positive and negative examples are 
available for analysis. For the immediately foreseeable future, the wireless devices typically 
used will be limited in input and output capability. Requiring customers to rate some products 
before making recommendation is not realistic. Secondly, M-Commerce is unique in its 
location-aware capability (Stafford and Gillenson 2003). Mobile computing adds a relevant 
but mostly unexplored piece of information- customer’s position- to the recommendation 
problem. Personal recommendation in M-Commerce has the opportunity and necessity to 
take location into account. We therefore propose a location-aware framework for 
recommending venders’ web pages in mobile environment.  
 
This paper is structured as follows. The overall architecture of the PR system is described in 
Section 3. Detailed design and construction approaches are described in Section 4. 
Preliminary evaluation and implementation experience are discussed in Section 5. Finally, 
Section 6 summarizes this paper and points out our future directions. 
 
3. System architecture 
Generally, positioning systems fall into one of two categories. In centralized architectures, 
such as Active Badge (Harter and Hopper, 1994), Active Bats (Ward et al., 1997), and 
PARCTab (Want et al., 1996), the infrastructure consists of receivers deployed in some places, 
with end-users beaconing out data. Client’s location is determined and held on servers. On the 
contrary, in decentralized architectures, such as Cricket (Priyantha et al., 2000) and RADAR 
(Bahl and Padmanabhan, 2000), the infrastructure consists of beacons deployed in some 
places, signaling to clients their locations. Hence, client’s location is determined and held on 
a personal device.  
 
There were numerous interviews (Barkhuus and Dey, 2003), reports (Weiser et al., 1999), and 
books (Garfinkel, 2001) describing people’s unease over the potential for abuse of the 
privacy-sensitive location-aware systems. These concerns suggest that privacy may be the 
greatest barrier to adoption of location-aware services (Hong et al., 2003). Compared with 
centralized approach, decentralized approach gives end-users greater choice over whether to 
disclose their location data to others. Therefore, in this research, we adopt decentralized 
approach. Customers take control over their location data and only send out to the server as 
they need the recommendation service. 
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The overall architecture of the PR system is shown as Figure1. On the client side, there are 
two components. The first component is the off-the-shelf internet browser, and the second 
one is the location manager which estimates client’s position. As customer needs the 
recommendation service, the request sends with the instant position to the server. On the 
server side, the core is the recommendation engine which consists of two components: 
off-line and on-line subsystems. The off-line subsystem maintains a database, WEB ACCESS, 
which logs data about what pages have been visited by each customer. The off-line subsystem 
also analyzes the logged data and derives each customer’s interest profile. As receiving 
service request, the on-line subsystem generates a list of possibly interesting web pages by 
employing customer’s interest profile and the instant position provided by the location 
manager. 

 

Browser

Location
manager

Client
WWW proxy

(optional)

WEB
ACCESS

Server

Internet

Profile generator
(Off-line)

INTEREST
PROFILE

Recommendation
generator (On-line)

Recommendation engine
 

 
Figure1. Architecture of PR system 

 
A screenshot of the client-side subsystem is shown as Figure2. After sending a service request, 
the customer receives a recommendation list containing links to various venders in the 
bottom frame. The positions of recommended venders are also marked in an e-map shown in 
the top frame to help the customer realizing venders’ locations. Once a link in the bottom 
frame being clicked, the corresponding web page will be shown in the bottom frame. 
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Figure2. A screenshot of the client-side PR system 
 
4. Proposed approaches 
In this section, we first describe the off-line learning tasks conducted in the recommendation 
engine of the PR system, and then close with the on-line generation of a recommendation list. 
 
Identification of interest profile 
Once the WEB ACCESS database is populated with past customer accesses to pages, its data 
can be used to estimate customer’s interest profile. The PR system collects the visited web 
pages and applies a simple information extraction method (Kushmerick, 1997) to it. 
Information extraction (IE) is the task of locating specific pieces of information from a text, 
thereby obtaining useful structured data from unstructured text. In our system, specifically, it 
involves parsing the raw pages, removing punctuations and prepositions, and grouping 
stemming words into generalized terms. The system adopts the bag-of-words model and 
creates a vector of terms for each web page, in which each cell indicates the frequency with 
which each term occurs in the page.  
 
Each customer’s interest profile, which is learned from the pages that the customer has 
visited, is also represented as a vector of terms. The system creates a vector of terms for each 
customer by summarizing the pages that he has visited. Therefore, suppose a customer c has 
visited a set S of web pages, the interest profile of customer c is estimated by Equ1, where 
Vector(w) denoted the term vector of page w. 
 

                                                    (Equ1) ∑
∈

=
Sw

wc )Vector()CP(
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Generation of recommendation list 
Based on the learned result (i.e., customer’s interest profile), the PR system estimates 
customer’s interest on vender’s web pages. The interest on a given page is primarily 
measured as the similarity of this page to the customer’s interest profile. The factor of 
distance between customer and vender is then considered. We posit that, for a customer, a 
farther vender is less likely to be visited with an exponential decay. Therefore, the interest of 
customer c on vender’s page w at instant position is estimated by Equ2, where λ∈[0,∞] is a 
parameter and Dis(c, w) denotes the Euclidean distance between customer c and the web page 
w1. The PR system generates a recommendation list containing the top-N web pages to the 
requested customer. 
 

),Dis(

))Vector(),(CP(Cosin),Interest( wce
wcwc ×= λ                                      (Equ2) 

 
It is noticed that λ is a parameter for representing customer’s sensitivity to location. Clearly, 
if λ is small, customer’s interest on a given page decrease mildly. In this case, it is more 
likely that a customer will choose a vender in a distant location. While in the case that λ is 
large, customer’s interest will decrease dramatically, and it is less likely that customer will 
choose a distant vender. In order to find a desired λ for each customer, a λ learning procedure 
is also designed in this research. The λ learning procedure starts with a randomly chosen λ0, 
and repeatedly makes gradual changes on it to find a desired parameter setting.  
 
LMS (Least Mean Square) strategy is used to determine the magnitude of gradual change. 
Once customer c requests the service, a set S of recommended pages is generated. Suppose 
page w∈ S is the farthest page that customer c selected. We can define a disjoint partitioning 
of S as SS ∪ SNS, where SS is the set of the pages closer than w to customer c and SNS is the 

rest set of pages. Take a review on the exponential decay function xe
xf 1)( = . For a given 

customer c and a given page w, the desired output of the function should be close to 1 if w ∈ 
SS (i.e., relatively near to customer c) and be close to 0 if w ∈ SNS (i.e., too far to customer c). 
Therefore, for estimated λ, the square error on comparing the estimated output and the 
desired output of the exponential decay function is , so that 
 

2),( )( deE wcDis −= ×−λ

),()(2 ),(),( wcDisedeE wcDiswcDis ××−−=
∂
∂ ×−×− λλ

λ
                                       (Equ3) 

                                                 
1 Since the goal of the PR system is to accommodate customer’s shopping needs with location dependent 
vendors, only pages created by location-dependent vendors are considered in this research. Accordingly, each 
page has a physical location coinciding with its vender.  
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The magnitude of gradual change in this research is hence computed as a negative multiple of 

λ∂
∂E  shown as Equ4, where d is 1 if w ∈ SS or 0 if w ∈ SNS. 

 
                                         (Equ4) 

 
The detailed pseudo code of the λ learning procedure is shown as Figure3. This procedure is 
implemented and embedded in client’s location manager component. Each time, as the 
customer requests the recommendation service, the current λ is send with client’s position to 
the server for generating a recommendation list. After receiving the generated pages, λ will 
then be recomputed according to customer’s navigation behavior and held on client’s device 
for next recommendation service. 

),()( ),(),( wcDisede wcDiswcDis ××−=∆ ×−×− λλλ

 
λ-learning(λ: real; S: a set of pages): real 
{ 
 Partition S into two sets SS and SNS

 For (each page w in S) 
 { 
  If (w ∈ SS) then 
    )

)

,()1( ),(),( wcDisee wcDiswcDis ××−+= ×−×− λλλλ
  Else 
    ,()0( ),(),( wcDisee wcDiswcDis ××−+= ×−×− λλλλ
 } 
 Return λ 
} 

   
Figure3. The pseudo code of the λ learning procedure 

 
5. Evaluation and discussion 
We currently concentrate on the on-line workload of the PR system, and test it in a simulated 
environment. K sites, each of which associates with a web page, have been placed across a 
10000m * 10000m square in random positions. We consider a service station in which 
customers, each of which associates with a random characteristic value and a vector of terms, 
arrive in accordance with a Poisson process with rate β. Upon arrival, a customer either 
enters service if the recommendation engine is free at that moment or else joins the waiting 
queue. When the engine generates a recommendation list for a customer it then either begins 
serving the customer that had been waiting the longest if there are any waiting customers, or, 
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if there are no waiting customers, it remains free until the next customer’s arrival. In addition, 
there is a fixed time- one hour- after which no additional arrivals are allowed to enter the 
system, although the server completes servicing all those that are already in the system. 
 
We first investigated the effects of the number of the web sites, ranging from 10000 to 50000 
at 10000 increments, on the average servicing time of request. 10 experiments are executed 
and the average result is shown as Figure4(a). In general, the average servicing time grows 
linearly as the number of sites increases. It is expected since the PR system requires scanning 
the whole web page database for each service request to build a recommendation list. Also, 
we investigated the joint effects of the number of the web sites and the request arrival rate β, 
ranging from 2 to 10 at 2 increments, on the average time a customer spends in the system 
(i.e., including servicing time and waiting time). 10 experiments are executed and the average 
result is shown as Figure4(b). In the left-bottom area of Figure 4(b), the average time a 
customer spends in the system grows mildly. However, as the servicing time exceeds the time 
period between two requests (i.e., the inverse of the arrival rate β), as data shown in the 
right-top area, the average time a customer spends in the system grows dramatically. This is 
because a great number of requests are accumulated in the waiting queue, and accordingly 
result in the huge increase of the waiting time.  
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Figure4. The execution time of the experimental PR system 
 

From the simulated evaluation, it is clear that the scalability problem is critical for the success 
of location-aware recommendation system. Customers often expect to receive the generated 
recommendation list in a real time manner, and thus it is necessary for the system to deal with 
the problem of efficiently finding interesting pages, particularly in the heavy traffic case. We 
therefore recognize this scalability problem worthy for further research in our project. It is 
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conceived to use some locality-based data structures and searching strategies to ease the work 
of scanning the page database. 
 
Also, a real-world pilot study is performing in our project. We have five subjects; all of them 
are undergraduate students. The involved subjects are shown a brief, two-minute 
demonstration of the system; then they are provided with PDAs implemented the system; and 
they are asked to use the device for three months. At the first month, only the browser 
component is activated to log what pages have been visited by the subject. At the second and 
third months, all components are activated to provide the recommendation service. After this 
pilot study, we will involve more subjects with various demographic characteristics to test the 
effectiveness of our system.  
 
Also, though the decentralized approach we adopted is considered as a more flexible privacy 
mechanism, subjects still exposed their privacy concerns in the pilot study. Mostly, they 
concerned that, though location is calculated locally, in the connected case, the information is 
still transmitted through an access point, across a network service provider, and to the 
recommendation service provider. There is still possibility that location data be revealed 
without control. Therefore, studying some privacy-preserving schemes and techniques to 
integrate into our architecture and hence improve the privacy level of our system is another 
direction of our research. 
 
6. Conclusion 
In this paper, we have addressed the issue of location-aware personal recommendation. This 
paper reflects our effort to formulate a system that amalgamates the information abundance of 
the internet with the tangible richness of physical shopping. We have discussed how the 
system being conducted to exploit the functionality afforded by a powerful location-aware 
architecture. Using the simulated model, we also estimated the efficiency of our current 
system. Hereafter, we will investigate the scalability and privacy problems as well as more 
extensive real-world tests in our project. 
 
Reference 
Alspector, J., Kolcz, A., and Karunanithi, N., “Comparing Feature-based and Clique-based 

User Models for Movie Selection,” Proceedings of International Conference on 
Digital Libraries, 1998. 

Ansari, A., Essegaier, S., and Kohli, R., “Internet Recommendation Systems,” Journal of 
Marketing Research, 37(3), 2000.  

Armstrong, R., Freitag, D., Joachims, T., and Mitchell, T., “WebWatcher: A Tour Guide for 
the World Wide Web,” Proceedings of International Joint Conference on Artificial 

 296



Intelligence, 1997. 
Bahl, P., and Padmanabhan, V.N., “RADAR: An In-Building RF-Based User Location and 

Tracking System,” IEEE INFOCOM, 2000. 
Balabanovi’c, M., and Shoham. Y., “Fab: Content-Based, Collaborative Recommendation,” 

Communications of the ACM, 40(3), 1997.  
Barkhuus, L., and Dey, A.K., “Location-based services for mobile telephony: a study of 

user’s privacy concerns,” Proceedings of the International Conference on 
Human-Computer Interaction, 2003. 

Basu, C., Hirsh, H., and Cohen, W., “Recommendation as Classification: Using Social and 
Content-Based Information in Recommendation,” Proceedings of AAAI 
Symposium on Machine Learning in Information Access, 1998. 

Billsus, and Pazzani, “A hybrid user model for news story classification,” Proceedings of 
International Conference on User Modeling, 1999. 

Breese, J., Heckerman, D., and Kadie, C., “Empirical analysis of predictive algorithms for 
collaborative filtering,” Tech. Report, MSR-TR-98-12, Microsoft Research, 1998. 

Brunato, M., and Battiti, R., “PILGRIM: A Location Broker and Mobility-Aware 
Recommendation System,” Proceedings of International Conference on Pervasive 
Computing and Communications, 2003. 

(1992), “Special issue on information filtering,” Communications of the ACM, 35(12), 1992. 
Garfinkel, S., “Database Notion: The Death of Privacy in the 21st Century,” 
O’Reilly & Associates, 2001. 

Goldberg, D., Nichols, D., Oki, B., and Terry, D., “Using collaborative filtering to weave an 
information tapestry,” Communications of the ACM, 35(12), 1992. 

Hater, A., and Hopper, A., “A Distributed Location System for the Active Office,” IEEE 
Network, 8(1), 1994. 

Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L, and Riedl, J., “GroupLens: 
Applying Collaborative Filtering to Usenet News,” Communications of the ACM, 
40(3), 1997.  

Kushmerick, N., Weld, D., and Doorenbos, B., “Wrapper Induction for Information 
Extraction,” Proceedings of International Joint Conference on Artificial 
Intelligence, 1997. 

Lang, K., “Newsweeder: Learning to Filter Netnews,” Proeedings of International 
Conference on Machine Learning., 1995. 

Mooney, R., and Roy, L., “Content-Based Book Recommending Using Learning for Text 
Categorization,” Proceedings of International Conference on Digital Libraries, 
2000. 

Pazzani, M., “A Framework for Collaborative, Content-based and Demographic Filtering,” 
Artificial Intelligence Review, 13(5-6), 1999.  

 297



Pennock, D., Horvitz, E., Lawrence, S., and Giles, C., “Collaborative Filtering by Personality 
Diagnosis: A Hybrid Memory- and Model-Based Approach,” Proceedings of the 
Conference on Uncertainty in Artificial Intelligence, 2000. 

Priyantha, N.B., Chakraborty, A., and Balakrishnan, H., “The Cricket Location-Support 
System,” Proceedings of the International Conference on Mobile Computing and 
Networking, 2000. 

Schafer, J., Konstan, J., and Riedl, J., “E-Commerce Recommendation Applications,” Data 
Mining and Knowledge Discovery, 5(1), 2001.  

Shardanand, U., and Maes, P., “Social Information Filtering: Algorithms for Automating 
‘Word of Mouth’,” Proceedings of International Conference on Human Factors in 
Computing Systems, 1995. 

Stafford, T. F., and Gillenson, M. L., “Mobile Commerce: What It Is and What It Could Be,” 
Communications of the ACM, 46(12), 2003. 

Sun, J., “Information Requirement Elicitation in Mobile Commerce,” Communications of the 
ACM, 46(12), 2003. 

Terveen, L., Hill, W., Amento, B., McDonald, D., and Creter, J., “PHOAKS: A System for 
Sharing Recommendations,” Communications of the ACM, 40(3), 1997.  

Tewari, G., Youll, J., and Maes, P., “Personalized location-based brokering using an 
agent-based intermediary architecture,” Decision Support Systems, 34(12), 2002. 
Wan, R., “The PARCTAB Ubiquitous Computing Experiment,” Mobile 
Computing, 1996.  

Ward, A., Jones, A., and Hopper, A., “A New Location Technique for the Active Office,” 
IEEE Personnel Communications, 4(5), 1997. 

Weiser, M., Gold, R., and Brown, J.S., “The Origins of Ubiquitous Computing Research at 
PARC in the Late 1980,” IBM Systems Journal, 38(4), 1999. 

 

 298


	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2004

	Personal Recommendation in Mobile Environment
	Wan-Shiou Yang
	Jia-Ben Dia
	Recommended Citation


	Personal Recommendation in Mobile Environment

