2 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A blockchain-based security system with light cryptography for user authentication security

    No full text
    International audienceNowadays, the Internet of Things (IoT) enables the creation of a wide range of new services, including smart cities, agriculture, energy, technology, healthcare, and other security concerns. Safety concerns currently limit the development of this advanced technology. On the other hand, traditional security protocols and existing solutions cannot be used for IoT because most of them cannot guarantee good performance. Furthermore, they are often severely limited in terms of storage, computing power, and performance. The aim of the proposed research is to introduce a secure verification framework for user authentication, with a special focus on the communication between access points and node databases. The main goal is to increase the level of security within the proposed approach, ensuring the confidentiality, integrity, and availability of the image verification system during the authentication process. To achieve this goal, three phases were implemented. First, a new hybrid biometric pattern is proposed that merges image and password features to enhance the security of user authentication. Second, lightweight Encryption and Blockchain technologies are also utilized to ensure secure communication of patterns between the access point and the node database. Finally, in order to verify authenticity, a new proposed matching process involves comparing image and password features with the database records. The experimental analysis has been carried out in terms of accuracy, False Rejection Rate (FRR), False Acceptance Rate (FAR), and error rate. The proposed approach attained an accuracy of 98%, FAR of 0.1, FRR of 0.992, and an error rate of 0.017
    corecore