1,554 research outputs found
Optimization algorithms for the solution of the frictionless normal contact between rough surfaces
This paper revisits the fundamental equations for the solution of the
frictionless unilateral normal contact problem between a rough rigid surface
and a linear elastic half-plane using the boundary element method (BEM). After
recasting the resulting Linear Complementarity Problem (LCP) as a convex
quadratic program (QP) with nonnegative constraints, different optimization
algorithms are compared for its solution: (i) a Greedy method, based on
different solvers for the unconstrained linear system (Conjugate Gradient CG,
Gauss-Seidel, Cholesky factorization), (ii) a constrained CG algorithm, (iii)
the Alternating Direction Method of Multipliers (ADMM), and () the
Non-Negative Least Squares (NNLS) algorithm, possibly warm-started by
accelerated gradient projection steps or taking advantage of a loading history.
The latter method is two orders of magnitude faster than the Greedy CG method
and one order of magnitude faster than the constrained CG algorithm. Finally,
we propose another type of warm start based on a refined criterion for the
identification of the initial trial contact domain that can be used in
conjunction with all the previous optimization algorithms. This method, called
Cascade Multi-Resolution (CMR), takes advantage of physical considerations
regarding the scaling of the contact predictions by changing the surface
resolution. The method is very efficient and accurate when applied to real or
numerically generated rough surfaces, provided that their power spectral
density function is of power-law type, as in case of self-similar fractal
surfaces.Comment: 38 pages, 11 figure
Physical properties of solar polar jets: A statistical study with Hinode XRT data
The target of this work is to investigate the physical nature of polar jets
in the solar corona and their possible contribution to coronal heating and
solar wind flow based on the analysis of X-ray images acquired by the Hinode
XRT telescope. We estimate the different forms of energy associated with many
of these small-scale eruptions, in particular the kinetic energy and enthalpy.
Two Hinode XRT campaign datasets focusing on the two polar coronal holes were
selected to analyze the physical properties of coronal jets; the analyzed data
were acquired using a series of three XRT filters. Typical kinematical
properties (e.g., length, thickness, lifetime, ejection rate, and velocity) of
18 jets are evaluated from the observed sequences, thus providing information
on their possible contribution to the fast solar wind flux escaping from
coronal holes. Electron temperatures and densities of polar-jet plasmas are
also estimated using ratios of the intensities observed in different filters.
We find that the largest amount of energy eventually provided to the corona
is thermal. The energy due to waves may also be significant, but its value is
comparatively uncertain. The kinetic energy is lower than thermal energy, while
other forms of energy are comparatively low. Lesser and fainter events seem to
be hotter, thus the total contribution by polar jets to the coronal heating
could have been underestimated so far. The kinetic energy flux is usually
around three times smaller than the enthalpy counterpart, implying that this
energy is converted into plasma heating more than in plasma acceleration. This
result suggests that the majority of polar jets are most likely not escaping
from the Sun and that only cooler ejections could possibly have enough kinetic
energy to contribute to the total solar wind flow.Comment: 21 pages, 10 figures, Submitted and accepted for publishing in
Astronomy and Astrophysics journa
Fitting Jump Models
We describe a new framework for fitting jump models to a sequence of data.
The key idea is to alternate between minimizing a loss function to fit multiple
model parameters, and minimizing a discrete loss function to determine which
set of model parameters is active at each data point. The framework is quite
general and encompasses popular classes of models, such as hidden Markov models
and piecewise affine models. The shape of the chosen loss functions to minimize
determine the shape of the resulting jump model.Comment: Accepted for publication in Automatic
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio and EUV observations: a different take on the diagnostics of coronal magnetic fields
On 2014 October 30, a band-splitted type II radio burst associated with a
coronal mass ejection (CME) observed by the Atmospheric Imaging Assembly (AIA)
on board the Solar Dynamic Observatory (SDO) occurred over the southeast limb
of the Sun. The fast expansion in all directions of the plasma front acted as a
piston and drove a spherical fast shock ahead of it, whose outward progression
was traced by simultaneous images obtained with the Nan\c{c}ay Radioheliograph
(NRH). The geometry of the CME/shock event was recovered through 3D modeling,
given the absence of concomitant stereoscopic observations, and assuming that
the band-splitted type II burst was emitted at the intersection of the shock
surface with two adjacent low-Alfven speed coronal streamers. From the derived
spatiotemporal evolution of the standoff distance between shock and CME leading
edge, we were finally able to infer the magnetic field strength in the
inner corona. A simple radial profile of the form nicely fits our results, together with previous estimates, in the range
solar radii.Comment: Accepted for publication in Astronomy & Astrophysics Letter
Characteristics of polar coronal hole jets
High spatial- and temporal-resolution images of coronal hole regions show a
dynamical environment where mass flows and jets are frequently observed. These
jets are believed to be important for the coronal heating and the acceleration
of the fast solar wind. We studied the dynamics of two jets seen in a polar
coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We
observed drift motions related to the evolution and formation of these
small-scale jets, which we tried to model as well. We found observational
evidence that supports the idea that polar jets are very likely produced by
multiple small-scale reconnections occurring at different times in different
locations. These eject plasma blobs that flow up and down with a motion very
similar to a simple ballistic motion. The associated drift speed of the first
jet is estimated to be 27 km s. The average outward speed of
the first jet is km s, well below the escape speed, hence
if simple ballistic motion is considered, the plasma will not escape the Sun.
The second jet was observed in the south polar coronal hole with three XRT
filters, namely, Cpoly, Alpoly, and Almesh filters. We
observed that the second jet drifted at all altitudes along the jet with the
same drift speed of 7 km s. The enhancement in the light curves
of low-temperature EIS lines in the later phase of the jet lifetime and the
shape of the jet's stack plots suggests that the jet material is falls back,
and most likely cools down. To support this conclusion, the observed drifts
were interpreted within a scenario where reconnection progressively shifts
along a magnetic structure, leading to the sequential appearance of jets of
about the same size and physical characteristics. On this basis, we also
propose a simple qualitative model that mimics the observations.Comment: Accepted Astronomy and Astrophysic
Spontaneous transition to a fast 3D turbulent reconnection regime
We show how the conversion of magnetic field energy via magnetic reconnection
can progress in a fully three-dimensional, fast, volume-filling regime. An
initial configuration representative of many laboratory, space and
astrophysical plasmas spontaneously evolves from the well-known regime of slow,
resistive reconnection to a new regime that allows to explain the rates of
energy transfer observed in jets emitted from accretion disks, in stellar/solar
flare processes as well as in laboratory plasmas. This process does not require
any pre-existing turbulence seed which often is not observed in the host
systems prior to the onset of the energy conversion. The dynamics critically
depends on the interplay of perturbations developing along the magnetic field
lines and across them, a process possible only in three-dimensions. The
simulations presented here are the first able to show this transition in a
fully three-dimensional configuration.Comment: 6 pages, 6 figure
- …