436 research outputs found

    Performance of a 229 Thorium solid-state nuclear clock

    Full text link
    The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an etalon transition in a new type of optical frequency standard. Here we discuss the construction of a "solid-state nuclear clock" from Thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of Calcium fluoride. At liquid Nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the Thorium nucleus to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on counting of flourescence photons and present optimized operation parameters. Taking advantage of the high number of quantum oscillators under continuous interrogation, a fractional instability level of 10^{-19} might be reached within the solid-state approach.Comment: 28 pages, 9 figure

    Pilots for Space Tourism

    Get PDF
    This article sheds light on the key player needed for any space tourism adventure: the pilot who flies the spacecraft. The paper addresses the potential benefits of including a pilot at the controls when designing a space tourism spacecraft. It examines the basic qualifications and advanced skills required of space tourism pilots and discusses key training requirements for selected pilots and space pilots’ pay and benefits. In addition, the research concludes that, just as the pioneers of passenger transport in aviation entertained and captured the interest of their passengers, the space pilot should have the skills of a tour guide

    Standardization of sample collection, isolation and analysis methods in extracellular vesicle research

    Get PDF
    The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techniques that can be harnessed to address the many gaps in our current knowledge were the subject of a special workshop of the International Society for Extracellular Vesicles (ISEV) in New York City in October 2012. As part of the “ISEV Research Seminar: Analysis and Function of RNA in Extracellular Vesicles (evRNA)”, 6 round-table discussions were held to provide an evidence-based framework for isolation and analysis of EV, purification and analysis of associated RNA molecules, and molecular engineering of EV for therapeutic intervention. This article arises from the discussion of EV isolation and analysis at that meeting. The conclusions of the round table are supplemented with a review of published materials and our experience. Controversies and outstanding questions are identified that may inform future research and funding priorities. While we emphasize the need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results, we also recognize that continual development and evaluation of techniques will be necessary as new knowledge is amassed. On many points, consensus has not yet been achieved and must be built through the reporting of well-controlled experiments

    Visualization of proteomics data using R and bioconductor.

    Get PDF
    Data visualization plays a key role in high-throughput biology. It is an essential tool for data exploration allowing to shed light on data structure and patterns of interest. Visualization is also of paramount importance as a form of communicating data to a broad audience. Here, we provided a short overview of the application of the R software to the visualization of proteomics data. We present a summary of R's plotting systems and how they are used to visualize and understand raw and processed MS-based proteomics data.LG was supported by the European Union 7th Framework Program (PRIME-XS project, grant agreement number 262067) and a BBSRC Strategic Longer and Larger grant (Award BB/L002817/1). LMB was supported by a BBSRC Tools and Resources Development Fund (Award BB/K00137X/1). TN was supported by a ERASMUS Placement scholarship.This is the final published version of the article. It was originally published in Proteomics (PROTEOMICS Special Issue: Proteomics Data Visualisation Volume 15, Issue 8, pages 1375–1389, April 2015. DOI: 10.1002/pmic.201400392). The final version is available at http://onlinelibrary.wiley.com/doi/10.1002/pmic.201400392/abstract

    Assessment of Systemic Genetic Damage in Pediatric Inflammatory Bowel Disease.

    Get PDF
    The etiology of distal site cancers in inflammatory bowel disease (IBD) is not well understood and requires further study. We investigated whether pediatric IBD patients' blood cells exhibit elevated levels of genomic damage by measuring the frequency of mutant phenotype (CD59-/CD55-) reticulocytes (MUT RET) as a reporter of PIG-A mutation, and the frequency of micronucleated reticulocytes (MN-RET) as an indicator of chromosomal damage. IBD patients (n = 18 new onset disease, 46 established disease) were compared to age-matched controls (constipation or irritable bowel syndrome patients from the same clinic, n = 30) and young healthy adults age 19 - 24 (n = 25). IBD patients showed no indication of elevated MUT RET relative to controls (mean ± std. dev. = 3.1 ± 2.3 x 10-6 versus 3.6 ± 5.6 x 10-6 , respectively). In contrast, of 59 IBD patients where %MN-RET measurements were obtained, 10 exceeded the upper bound 90% tolerance interval derived from control subjects (i.e., 0.42%). Furthermore, each of the 10 IBD patients with elevated MN-RET had established disease (10/42), none were new onset (0/17) (p = 0.049). Interestingly, each of the subjects with increased chromosomal damage was receiving anti-TNF based monotherapy at the time blood was collected (10/10, 100%), whereas this therapy was less common (20/32, 63%) among patients that exhibited ≤ 0.42% MN-RET (p = 0.040). The results clearly indicate the need for further work to understand whether the results presented herein are reproducible, and if so, to elucidate the causative factor(s) responsible for elevated MN-RET frequencies in some IBD patients

    Semantic Similarity for Automatic Classification of Chemical Compounds

    Get PDF
    With the increasing amount of data made available in the chemical field, there is a strong need for systems capable of comparing and classifying chemical compounds in an efficient and effective way. The best approaches existing today are based on the structure-activity relationship premise, which states that biological activity of a molecule is strongly related to its structural or physicochemical properties. This work presents a novel approach to the automatic classification of chemical compounds by integrating semantic similarity with existing structural comparison methods. Our approach was assessed based on the Matthews Correlation Coefficient for the prediction, and achieved values of 0.810 when used as a prediction of blood-brain barrier permeability, 0.694 for P-glycoprotein substrate, and 0.673 for estrogen receptor binding activity. These results expose a significant improvement over the currently existing methods, whose best performances were 0.628, 0.591, and 0.647 respectively. It was demonstrated that the integration of semantic similarity is a feasible and effective way to improve existing chemical compound classification systems. Among other possible uses, this tool helps the study of the evolution of metabolic pathways, the study of the correlation of metabolic networks with properties of those networks, or the improvement of ontologies that represent chemical information

    IDSS: deformation invariant signatures for molecular shape comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many molecules of interest are flexible and undergo significant shape deformation as part of their function, but most existing methods of molecular shape comparison (MSC) treat them as rigid bodies, which may lead to incorrect measure of the shape similarity of flexible molecules.</p> <p>Results</p> <p>To address the issue we introduce a new shape descriptor, called Inner Distance Shape Signature (IDSS), for describing the 3D shapes of flexible molecules. The inner distance is defined as the length of the shortest path between landmark points within the molecular shape, and it reflects well the molecular structure and deformation without explicit decomposition. Our IDSS is stored as a histogram which is a probability distribution of inner distances between all sample point pairs on the molecular surface. We show that IDSS is insensitive to shape deformation of flexible molecules and more effective at capturing molecular structures than traditional shape descriptors. Our approach reduces the 3D shape comparison problem of flexible molecules to the comparison of IDSS histograms.</p> <p>Conclusion</p> <p>The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. We demonstrate the effectiveness of IDSS within a molecular search engine application for a benchmark containing abundant conformational changes of molecules. Such comparisons in several thousands per second can be carried out. The presented IDSS method can be considered as an alternative and complementary tool for the existing methods for rigid MSC. The binary executable program for Windows platform and database are available from <url>https://engineering.purdue.edu/PRECISE/IDSS</url>.</p

    Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: Ranking 1654 human protein targets by assayed compounds and molecular scaffolds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the classic Hopkins and Groom druggable genome review in 2002, there have been a number of publications updating both the hypothetical and successful human drug target statistics. However, listings of research targets that define the area between these two extremes are sparse because of the challenges of collating published information at the necessary scale. We have addressed this by interrogating databases, populated by expert curation, of bioactivity data extracted from patents and journal papers over the last 30 years.</p> <p>Results</p> <p>From a subset of just over 27,000 documents we have extracted a set of compound-to-target relationships for biochemical <it>in vitro </it>binding-type assay data for 1,736 human proteins and 1,654 gene identifiers. These are linked to 1,671,951 compound records derived from 823,179 unique chemical structures. The distribution showed a compounds-per-target average of 964 with a maximum of 42,869 (Factor Xa). The list includes non-targets, failed targets and cross-screening targets. The top-278 most actively pursued targets cover 90% of the compounds. We further investigated target ranking by determining the number of molecular frameworks and scaffolds. These were compared to the compound counts as alternative measures of chemical diversity on a per-target basis.</p> <p>Conclusions</p> <p>The compounds-per-protein listing generated in this work (provided as a supplementary file) represents the major proportion of the human drug target landscape defined by published data. We supplemented the simple ranking by the number of compounds assayed with additional rankings by molecular topology. These showed significant differences and provide complementary assessments of chemical tractability.</p

    In vitro studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the majority of prostate cancers (PC) express estrogen receptors, we evaluated the combination of radiation and estrogenic stimulation (estrogen and genistein) on the radiosensitivity of PC cells in vitro.</p> <p>Methods</p> <p>PC cells LNCaP (androgen-sensitive) and PC-3 (androgen-independent) were evaluated. Estrogen receptor (ER) expression was analyzed by means of immunostaining. Cells were incubated in FCS-free media with genistein 10 μM and estradiol 10 μM 24 h before irradiation and up to 24 h after irradiation. Clonogenic survival, cell cycle changes, and expression of p21 were assessed.</p> <p>Results</p> <p>LNCaP expressed both ER-α and ER-β, PC-3 did not. Incubation of LNCaP and PC-3 with genistein resulted in a significant reduction of clonogenic survival. Incubation with estradiol exhibited in low concentrations (0.01 μM) stimulatory effects, while higher concentrations did not influence survival. Both genistein 10 μM and estradiol 10 μM increased low-dose hyper-radiosensitivity [HRS] in LNCaP, while hormonal incubation abolished HRS in PC-3. In LNCaP cells hormonal stimulation inhibited p21 induction after irradiation with 4 Gy. In PC-3 cells, the proportion of cells in G2/M was increased after irradiation with 4 Gy.</p> <p>Conclusion</p> <p>We found an increased HRS to low irradiation doses after incubation with estradiol or genistein in ER-α and ER-β positive LNCaP cells. This is of high clinical interest, as this tumor model reflects a locally advanced, androgen dependent PC. In contrast, in ER-α and ER-β negative PC-3 cells we observed an abolishing of the HRS to low irradiation doses by hormonal stimulation. The effects of both tested compounds on survival were ER and p53 independent. Since genistein and estradiol effects in both cell lines were comparable, neither ER- nor p53-expression seemed to play a role in the linked signalling. Nevertheless both compounds targeted the same molecular switch. To identify the underlying molecular mechanisms, further studies are needed.</p
    • …
    corecore