114 research outputs found

    Identification, cloning and characterization of SpEX exotoxin produced by Staphylococcus pseudintermedius

    Get PDF
    Staphylococci have evolved numerous strategies to evade their hosts’ immune systems. Some staphylococcal toxins target essential components of host innate immunity, one of the two main branches of the immune system. Analysis of the Staphylococcus pseudintermedius secretome using liquid chromatography mass spectrometry guided by genomic data, was used to identify an S. pseudintermedius exotoxin provisionally named SpEX. This exoprotein has low overall amino acid identity with the Staphylococcus aureus group of proteins named staphylococcal superantigen like proteins (SSLs) and staphylococcal enterotoxin- like toxin X (SEIX), but predictive modeling showed that it shares similar folds and domain architecture to these important virulence factors. In this study, we found SpEX binds to complement component C5, prevents complement mediated lysis of sensitized bovine red blood cells, kills polymorphonuclear leukocytes and monocytes and inhibits neutrophil migration at sub-lethal concentrations. A mutant version of SpEX, produced through amino acid substitution at selected positions, had diminished cytotoxicity. Anti-SpEX produced in dogs reduced the inhibitory effect of native SpEX on canine neutrophil migration and protected immune cells from the toxic effects of the native recombinant protein. These results suggest that SpEX likely plays an important role in S. pseudintermedius virulence and that attenuated SpEX may be an important candidate for inclusion in a vaccine against S. pseudintermedius infections

    Characterization of a leukocidin identified in Staphylococcus pseudintermedius

    Get PDF
    Bacterial infections from Staphylococcus pseudintermedius are the most common cause of skin infections (pyoderma) affecting dogs. Two component pore-forming leukocidins are a family of potent toxins secreted by staphylococci and consist of S (slow) and F (fast) components. They impair the innate immune system, the first line of defense against these pathogens. Seven different leukocidins have been characterized in Staphylococcus aureus, some of which are host and cell specific. Through genome sequencing and analysis of the S. pseudintermediussecretome using liquid chromatography mass spectrometry we identified two proteins, named “LukS-I” and “LukF-I”, encoded on a degenerate prophage contained in the genome of S. pseudintermedius isolates. Phylogenetic analysis of LukS-I components in comparison to the rest of the leukocidin family showed that LukS-I was most closely related to S. intermediusLukS-I, S. aureus LukE and LukP, whereas LukF-I was most similar to S. intermedius LukF-I S. aureus gamma hemolysin subunit B. The killing effect of recombinant S. pseudintermediusLukS-I and LukF-I on canine polymorphonuclear leukocytes was determined using a flow cytometry cell permeability assay. The cytotoxic effect occurred only when the two recombinant proteins were combined. Engineered mutant versions of the two-component pore-forming leukocidins, produced through amino acids substitutions at selected points, were not cytotoxic. Anti-Luk-I produced in dogs against attenuated proteins reduced the cytotoxic effect of native canine leukotoxin which highlights the importance of Luk-I as a promising component in a vaccine against canine S. pseudintermedius infections

    Staphylococcus pseudintermedius Sbi paralogs inhibit complement and bind IgM, IgG Fc and Fab

    Get PDF
    The success of staphylococci as pathogens has been attributed, in part, to their ability to evade their hosts’ immune systems. Although the proteins involved in evasion have been extensively studied in staphylococci affecting humans little characterization has been done with Staphylococcus pseudintermedius, an important cause of pyoderma in dogs. Staphylococcus aureus binder of immunoglobulin (Sbi) interferes with innate immune recognition by interacting with multiple host proteins. In this study, a S. pseudintermedius gene that shares 38% similarity to S. aureus Sbi was cloned from S. pseudintermedius strains representative of major clonal lineages bearing two paralogs of the protein. Binding of immunoglobulins and Fab and Fc fragments as well as interaction with complement was measured. S. pseudintermedius Sbi protein bound IgG from multiple species and canine complement C3, neutralized complement activity and bound to canine IgM and B cells. Evidence from this work suggests Sbi may play an important role in S. pseudintermedius immune evasion

    Complete Genome Sequences of Three Staphylococcus pseudintermedius Strains Isolated from Botswana

    Get PDF
    We report here the first whole-genome sequences for 3 strains of Staphylococcus pseudintermedius (112N, 113N, and 114N) isolated in Africa. Samples of this opportunistic pathogen were collected from nasal swabs obtained from healthy carrier dogs in Botswana. The sequence information will facilitate spatial phylogenetic comparisons of staphylococcal species and other bacteria at the genome level

    Complete Genome Sequences of Four Staphylococcus aureus Sequence Type 398 Isolates from Four Goats with Osteomyelitis

    Get PDF
    Staphylococcus aureus is the causative agent of multiple infections, including bacteremia, infective endocarditis, osteomyelitis, septic arthritis, and prosthetic device infections. We report here the first whole-genome sequence for four S. aureus sequence type 398 isolates from clinical cases of osteomyelitis in four goats with a history of orthopedic surgery

    Isolation of Bartonella sp. from Sheep Blood

    Get PDF
    A Bartonella sp. was isolated from sheep blood. Bacterial identification was conducted by using electron microscopy and DNA sequencing of the 16S rRNA, citrate synthase, riboflavin synthase, and RNAase P genes. To our knowledge, this is the first report of ovine Bartonella infection

    Complete Genome Sequences of Three Important Methicillin-Resistant Clinical Isolates of Staphylococcus pseudintermedius.

    Get PDF
    We report the first complete genome sequences of three predominant clones (ST68, ST71, and ST84) of methicillin-resistant Staphylococcus pseudintermedius in North America. All strains were isolated from canine infections and have different SCCmec elements and antibiotic resistance gene patterns

    MicroRNA-26a Is Strongly Downregulated in Melanoma and Induces Cell Death through Repression of Silencer of Death Domains (SODD)

    Get PDF
    Melanoma is an aggressive cancer that metastasizes rapidly and is refractory to conventional chemotherapies. Identifying microRNAs (miRNAs) that are responsible for this pathogenesis is therefore a promising means of developing new therapies. We identified miR-26a through microarray and quantitative reverse-transcription–PCR (qRT-PCR) experiments as an miRNA that is strongly downregulated in melanoma cell lines as compared with primary melanocytes. Treatment of cell lines with miR-26a mimic caused significant and rapid cell death compared with a negative control in most melanoma cell lines tested. In surveying targets of miR-26a, we found that protein levels of SMAD1 (mothers against decapentaplegic homolog 1) and BAG-4/SODD were strongly decreased in sensitive cells treated with miR-26a mimic as compared with the control. The luciferase reporter assays further demonstrated that miR-26a can repress gene expression through the binding site in the 3′ untranslated region (3′UTR) of SODD (silencer of death domains). Knockdown of these proteins with small interfering RNA (siRNA) showed that SODD has an important role in protecting melanoma cells from apoptosis in most cell lines sensitive to miR-26a, whereas SMAD1 may have a minor role. Furthermore, transfecting cells with a miR-26a inhibitor increased SODD expression. Our findings indicate that miR-26a replacement is a potential therapeutic strategy for metastatic melanoma, and that SODD, in particular, is a potentially useful therapeutic target

    Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study

    Get PDF
    Objectives The aim of this study was to determine the phenotypic and genotypic resistance profiles of methicillin-resistant Staphylococcus pseudintermedius (MRSP) and to examine the clonal distribution in Europe and North America. Methods A total of 103 MRSP isolates from dogs isolated from several countries in Europe, the USA and Canada were characterized. Isolates were identified by PCR-restriction fragment length polymorphism (RFLP), antimicrobial susceptibility was determined by broth dilution or gradient diffusion, and antimicrobial resistance genes were detected using a microarray. Genetic diversity was assessed by multilocus sequence typing (MLST), PFGE and spa typing. Staphylococcal cassette chromosome mec (SCCmec) elements were characterized by multiplex PCR. Results Thirteen different sequence types (STs), 18 PFGE types and 8 spa types were detected. The hybrid SCCmec element II-III described in a MRSP isolate was present in 75 (72.8%) isolates. The remaining isolates either had SCCmec type III (n = 2), IV (n = 6), V (n = 14) or VII-241 (n = 4) or were non-typeable (n = 2). The most common genotypes were ST71(MLST)-J(PFGE)-t02(spa)-II-III(SCCmec) (56.3%) and ST68-C-t06-V (12.6%). In addition to mecA-mediated β-lactam resistance, isolates showed resistance to trimethoprim [dfr(G)] (90.3%), gentamicin/kanamycin [aac(6′)-Ie-aph(2′)-Ia] (88.3%), kanamycin [aph(3′)-III] (90.3%), streptomycin [ant(6′)-Ia] (90.3%), streptothricin (sat4) (90.3%), macrolides and/or lincosamides [erm(B), lnu(A)] (89.3%), fluoroquinolones (87.4%), tetracycline [tet(M) and/or tet(K)] (69.9%), chloramphenicol (catpC221) (57.3%) and rifampicin (1.9%). Conclusions Two major clonal MRSP lineages have disseminated in Europe (ST71-J-t02-II-III) and North America (ST68-C-t06-V). Regardless of their geographical or clonal origin, the isolates displayed resistance to the major classes of antibiotics used in veterinary medicine and thus infections caused by MRSP isolates represent a serious therapeutic challeng
    corecore