1 research outputs found

    High‐resolution InSAR reveals localised pre‐eruptive deformation inside the crater of Agung volcano, Indonesia.

    Get PDF
    During a volcanic crisis, high-rate, localized deformation can indicate magma close to the surface, with important implications for eruption forecasting. However, only a few such examples have been reported, because frequent, dense monitoring is needed. High-resolution Synthetic Aperture Radar (SAR) is capable of achieving 15 cm of line-of-sight shortening occurred over a 400-by-400 m area on the crater floor in September-October 2017, accompanying a deep seismic swarm and flank dyke intrusion. We attribute the deformation to the pressurization of a shallow (<200 m deep) hydrothermal system by the injection of magmatic gases and fluids. We also observe a second pulse of intra-crater deformation of 3–5 cm within 4 days to 11 hr prior to the first phreatomagmatic eruption, which is consistent with interaction between the hydrothermal system and the ascending magma. This phreatomagmatic eruption created the central pathway used during the final stages of magma ascent. Our observations have important implications for understanding unrest and eruption forecasting, and demonstrate the potential of monitoring with high-resolution SAR
    corecore