240 research outputs found

    Diverse Roles of Inhibitor of Differentiation 2 in Adaptive Immunity

    Get PDF
    The helix-loop-helix (HLH) transcription factor inhibitor of DNA binding 2 (Id2) has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK) cells, lymphoid tissue-inducer (LTi) cells, and the recently identified interleukin (IL)-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC) subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8+ T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection

    Transcriptional Regulation of Dendritic Cell Diversity

    Get PDF
    Dendritic cells (DCs) are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration, and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These findings open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now sets the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection

    Loss of Bim Increases T Cell Production and Function in Interleukin 7 Receptor–deficient Mice

    Get PDF
    Interleukin (IL)-7 receptor (R) signaling is essential for T and B lymphopoiesis by promoting proliferation, differentiation, and survival of cells. Mice lacking either IL-7 or the IL-7Rα chain have abnormally low numbers of immature as well as mature T and B lymphocytes. Transgenic expression of the apoptosis inhibitor Bcl-2 rescues T cell development and function in IL-7Rα–deficient mice, indicating that activation of a proapoptotic Bcl-2 family member causes death of immature and mature T cells. BH3-only proteins such as Bim, which are distant proapoptotic members of the Bcl-2 family, are essential initiators of programmed cell death and stress-induced apoptosis. We generated Bim/IL-7Rα double deficient mice and found that loss of Bim significantly increased thymocyte numbers, restored near normal numbers of mature T cells in the blood and spleen, and enhanced cytotoxic T cell responses to virus infection in IL-7Rα−/− mice. These results indicate that Bim cooperates with other proapoptotic proteins in the death of IL-7–deprived T cell progenitors in vivo, but is the major inducer of this pathway to apoptosis in mature T cells. This indicates that pharmacological inhibition of Bim function might be useful for boosting immune responses in immunodeficient patients

    Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers

    Get PDF
    The tumor microenvironment is highly heterogeneous. It is composed of a diverse array of immune cells that are recruited continuously into lesions. They are guided into the tumor through interactions between chemokines and their receptors. A variety of chemokine receptors are expressed on the surface of both tumor and immune cells rendering them sensitive to multiple stimuli that can subsequently influence their migration and function. These features significantly impact tumor fate and are critical in melanoma control and progression. Indeed, particular chemokine receptors expressed on tumor and immune cells are strongly associated with patient prognosis. Thus, potential targeting of chemokine receptors is highly attractive as a means to quench or eliminate unconstrained tumor cell growth

    The CD8α+ Dendritic Cell Is Responsible for Inducing Peripheral Self-Tolerance to Tissue-associated Antigens

    Get PDF
    We previously described a mechanism for the maintenance of peripheral self-tolerance. This involves the cross-presentation of tissue-associated antigens by a bone marrow–derived cell type that stimulates the proliferation and ultimate deletion of self-reactive CD8 T cells. This process has been referred to as cross-tolerance. Here, we characterize the elusive cell type responsible for inducing cross-tolerance as a CD8α+ dendritic cell (DC). To achieve this aim, transgenic mice were generated expressing yellow fluorescent protein (YFP) linked to CTL epitopes for ovalbumin and glycoprotein B (gB) of herpes simplex virus under the rat insulin promoter (RIP). Although tracking of YFP was inconclusive, the use of a highly sensitive gB-specific hybridoma that produced β-galactosidase on encounter with antigen, enabled detection of antigen presentation by cells isolated from the pancreatic lymph node. This showed that a CD11c+CD8α+ cell was responsible for cross-tolerance, the same DC subset as previously implicated in cross-priming. These data indicate that CD8α+ DCs play a critical role in both tolerance and immunity to cell-associated antigens, providing a potential mechanism by which cytotoxic T lymphocyte can be immunized to viral antigens while maintaining tolerance to self

    Selected Toll-like Receptor Ligands and Viruses Promote Helper-Independent Cytotoxic T Cell Priming by Upregulating CD40L on Dendritic Cells

    Get PDF
    SummaryCD40L (CD154) on CD4+ T cells has been shown to license dendritic cells (DCs) via CD40 to prime cytotoxic T lymphocyte (CTL) responses. We found that the converse (CD40L on DCs) was also important. Anti-CD40L treatment decreased endogenous CTL responses to both ovalbumin and influenza infection even in the absence of CD4+ T cells. DCs expressed CD40L upon stimulation with agonists to Toll-like receptor 3 (TLR3) and TLR9. Moreover, influenza infection, which stimulates CTLs without help, upregulated CD40L on DCs, but herpes simplex infection, which elicits CTLs through help, did not. CD40L-deficient (Cd40lg−/−) DCs are suboptimal both in vivo in bone marrow chimera experiments and in vitro in mixed lymphocyte reactions. In contrast, Cd40lg−/− CD8+ T cells killed as effectively as wild-type cells. Thus, CD40L upregulation on DCs promoted optimal priming of CD8+ T cells without CD4+ T cells, providing a mechanism by which pathogens may elicit helper-independent CTL immunity

    Multiple Dendritic Cell Populations Activate CD4+ T Cells after Viral Stimulation

    Get PDF
    Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8α DC play a prominent, and sometimes exclusive, role in driving amplification of CD8+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4+ and CD8+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8α DC populations in the amplification of CD8+ and CD4+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8+ T cells are dominated by presentation of antigen by CD8α DC but can involve non-CD8α DC. In contrast, CD4+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity

    ISCOMATRIX vaccines mediate CD8+ T-cell cross-priming by a MyD88-dependent signaling pathway

    Get PDF
    Generating a cytotoxic CD8+ T-cell response that can eradicate malignant cells is the primary objective of cancer vaccine strategies. In this study we have characterized the innate and adaptive immune response to the ISCOMATRIX adjuvant, and the ability of vaccine antigens formulated with this adjuvant to promote antitumor immunity. ISCOMATRIX adjuvant led to a rapid innate immune cell response at the injection site, followed by the activation of natural killer and dendritic cells (DC) in regional draining lymph nodes. Strikingly, major histocompatibility complex (MHC) class I cross-presentation by CD8α+ and CD8α− DCs was enhanced by up to 100-fold when antigen was formulated with ISCOMATRIX adjuvant. These coordinated features enabled efficient CD8+ T-cell cross-priming, which exhibited prophylactic and therapeutic tumoricidal activity. The therapeutic efficacy of an ISCOMATRIX vaccine was further improved when co-administered with an anti-CD40 agonist antibody, suggesting that ISCOMATRIX-based vaccines may combine favorably with other immune modifiers in clinical development to treat cancer. Finally, we identified a requirement for the myeloid differentiation primary response gene 88 (MyD88) adapter protein for both innate and adaptive immune responses to ISCOMATRIX vaccines in vivo. Taken together, our findings support the utility of the ISCOMATRIX adjuvant for use in the development of novel vaccines, particularly those requiring strong CD8+ T-cell immune responses, such as therapeutic cancer vaccines

    Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells

    Get PDF
    The cytokine IL-15 is required for natural killer (NK) cell homeostasis; however, the intrinsic mechanism governing this requirement remains unexplored. Here we identify the absolute requirement for myeloid cell leukaemia sequence-1 (Mcl1) in the sustained survival of NK cells in vivo. Mcl1 is highly expressed in NK cells and regulated by IL-15 in a dose-dependent manner via STAT5 phosphorylation and subsequent binding to the 3'-UTR of Mcl1. Specific deletion of Mcl1 in NK cells results in the absolute loss of NK cells from all tissues owing to a failure to antagonize pro-apoptotic proteins in the outer mitochondrial membrane. This NK lymphopenia results in mice succumbing to multiorgan melanoma metastases, being permissive to allogeneic transplantation and being resistant to toxic shock following polymicrobial sepsis challenge. These results clearly demonstrate a non-redundant pathway linking IL-15 to Mcl1 in the maintenance of NK cells and innate immune responses in vivo

    Type 2 Innate Lymphoid Cells Protect against Colorectal Cancer Progression and Predict Improved Patient Survival.

    Get PDF
    Chronic inflammation of the gastrointestinal (GI) tract contributes to colorectal cancer (CRC) progression. While the role of adaptive T cells in CRC is now well established, the role of innate immune cells, specifically innate lymphoid cells (ILCs), is not well understood. To define the role of ILCs in CRC we employed complementary heterotopic and chemically-induced CRC mouse models. We discovered that ILCs were abundant in CRC tumours and contributed to anti-tumour immunity. We focused on ILC2 and showed that ILC2-deficient mice developed a higher tumour burden compared with littermate wild-type controls. We generated an ILC2 gene signature and using machine learning models revealed that CRC patients with a high intratumor ILC2 gene signature had a favourable clinical prognosis. Collectively, our results highlight a critical role for ILC2 in CRC, suggesting a potential new avenue to improve clinical outcomes through ILC2-agonist based therapeutic approaches
    corecore