14 research outputs found

    Discovering unique tobacco use patterns among Alaska Native people

    Get PDF
    Background . Alaska Native people are disproportionately impacted by tobacco-related diseases in comparison to non-Native Alaskans. Design. We used Alaska's Behavioral Risk Factor Surveillance System (BRFSS) to describe tobacco use among more than 4,100 Alaska Native adults, stratified by geographic region and demographic groups. Results . Overall tobacco use was high: approximately 2 out of every 5 Alaska Native adults reported smoking cigarettes (41.2%) and 1 in 10 reported using smokeless tobacco (SLT, 12.3%). A small percentage overall (4.8%) reported using iq'mik, an SLT variant unique to Alaska Native people. When examined by geographic region, cigarette smoking was highest in remote geographic regions; SLT use was highest in the southwest region of the state. Use of iq'mik was primarily confined to a specific area of the state; further analysis showed that 1 in 3 women currently used iq'mik in this region. Conclusion . Our results suggest that different types of tobacco use are epidemic among diverse Alaska Native communities. Our results also illustrate that detailed analysis within racial/ethnic groups can be useful for public health programme planning to reduce health disparities

    Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of <it>Coenobita clypeatus </it>(Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase.</p> <p>Results</p> <p>The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that <it>C. clypeatus </it>has visual and mechanosensory skills that are comparable to those of marine Crustacea.</p> <p>Conclusion</p> <p>In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of <it>C. clypeatus</it>. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.</p

    Transformation and oncogenicity by Adenoviruses

    No full text
    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor induction in vivo and. cell transformation in vitro. Together with the small papovaviruses they have played an important role in fundamental cancer research and have provided invaluable tools for studies on the organization and the expression of eukaryotic genes. The introduction of new techniques of DNA sequencing, molecular cloning, and DNA transfection in the past few years have furter contributed to a rapid development of adenovirus research in all its diverse aspects

    Perspectives of “PUFA-GPR40 Signaling” Crucial for Adult Hippocampal Neurogenesis

    No full text
    corecore