3,799 research outputs found

    Some Implications of the Cosmological Constant to Fundamental Physics

    Get PDF
    In the presence of a cosmological constant, ordinary Poincare' special relativity is no longer valid and must be replaced by a de Sitter special relativity, in which Minkowski space is replaced by a de Sitter spacetime. In consequence, the ordinary notions of energy and momentum change, and will satisfy a different kinematic relation. Such a theory is a different kind of a doubly special relativity. Since the only difference between the Poincare' and the de Sitter groups is the replacement of translations by certain linear combinations of translations and proper conformal transformations, the net result of this change is ultimately the breakdown of ordinary translational invariance. From the experimental point of view, therefore, a de Sitter special relativity might be probed by looking for possible violations of translational invariance. If we assume the existence of a connection between the energy scale of an experiment and the local value of the cosmological constant, there would be changes in the kinematics of massive particles which could hopefully be detected in high-energy experiments. Furthermore, due to the presence of a horizon, the usual causal structure of spacetime would be significantly modified at the Planck scale.Comment: 15 pages, lecture presented at the "XIIth Brazilian School of Cosmology and Gravitation", Mangaratiba, Rio de Janeiro, September 10-23, 200

    Cosmological Term and Fundamental Physics

    Full text link
    A nonvanishing cosmological term in Einstein's equations implies a nonvanishing spacetime curvature even in absence of any kind of matter. It would, in consequence, affect many of the underlying kinematic tenets of physical theory. The usual commutative spacetime translations of the Poincare' group would be replaced by the mixed conformal translations of the de Sitter group, leading to obvious alterations in elementary concepts such as time, energy and momentum. Although negligible at small scales, such modifications may come to have important consequences both in the large and for the inflationary picture of the early Universe. A qualitative discussion is presented which suggests deep changes in Hamiltonian, Quantum and Statistical Mechanics. In the primeval universe as described by the standard cosmological model, in particular, the equations of state of the matter sources could be quite different from those usually introduced.Comment: RevTeX, 4 pages. Selected for Honorable Mention in the Annual Essay Competition of the Gravity Research Foundation for the year 200

    On the 4D generalized Proca action for an Abelian vector field

    Full text link
    We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated St\"uckelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the St\"uckelberg field describing the longitudinal mode, which is in agreement with the results of JCAP 1405, 015 (2014) and Phys. Lett. B 757, 405 (2016) and complements those of JCAP 1602, 004 (2016). We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field AμA_\mu, the Faraday tensor FμνF_{\mu \nu} and its Hodge dual F~μν\tilde{F}_{\mu \nu}.Comment: LaTeX file in jcappub style, 11 pages, no figures. v2: Minor changes according to the referee requirements. A new parity-violating term in the Lagrangian has been uncovered and the text has been changed accordingly. The conclusions are, essentially, unchanged. v3: Miscellaneous changes. Version to be published in Journal of Cosmology and Astroparticle Physic

    On the stability and causality of scalar-vector theories

    Full text link
    Various extensions of standard inflationary models have been proposed recently by adding vector fields. Because they are generally motivated by large-scale anomalies, and the possibility of statistical anisotropy of primordial fluctuations, such models require to introduce non-standard couplings between vector fields on the one hand, and either gravity or scalar fields on the other hand. In this article, we study models involving a vector field coupled to a scalar field. We derive restrictive necessary conditions for these models to be both stable (Hamiltonian bounded by below) and causal (hyperbolic equations of motion).Comment: 20 pages, references added, v2 matches published version in JCA
    corecore